两个独立变量乘积的协方差

问题描述:协方差怎么计算,请举例说明 大家好,给大家分享一下两个相互独立的随机变量的协方差,很多人还不知道这一点。下面详细解释一下。现在让我们来看看!

财务管理中协方差的计算公式

两个独立变量乘积的协方差的相关图片

cov(x,y)=EXY-EX*EY。

协方差的定义,EX为随机变量X的数学期望,同理,EXY是XY的数学期望,挺麻烦的,建议你看一下概率论cov(x,y)=EXY-EX*EY。

举例:

Xi 1.1 1.9 3

Yi 5.0 10.4 14.6。

E(X) = (1.1+1.9+3)/3=2。

E(Y) = (5.0+10.4+14.6)/3=10。

E(XY)=(1.1×5.0+1.9×10.4+3×14.6)/3=23.02 

Cov(X,Y)=E(XY)-E(X)E(Y)=23.02-2×10=3.02。

此外:还可以计算:D(X)=E(X^2)-E^2(X)=(1.1^2+1.9^2+3^2)/3 - 4=4.60-4=0.6 σx=0.77。

D(Y)=E(Y^2)-E^2(Y)=(5^2+10.4^2+14.6^2)/3-100=15.44 σy=3.93。

X,Y的相关系数:

r(X,Y)=Cov(X,Y)/(σxσy)=3.02/(0.77×3.93) = 0.9979 

表明这组数据X,Y之间相关性很好。

扩展资料

协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:

从直观上来看,协方差表示的是两个变量总体误差的期望。

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。

但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。

协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。

协方差为0的两个随机变量称为是不相关的。

参考资料:百度百科协方差

两个非独立随机变量乘积的协方差怎么求?的相关图片

两个非独立随机变量乘积的协方差怎么求?

COV(X,Y)=E(XY)-E(X)E(Y)

协方差cov(x,y)=相关系数r×两项资产标准差乘积。

拓展资料:

在财务管理上,协方差是一个用于测量资产组合中某一具体投资项目相对于另一个投资项目风险的统计指标。

我们需要记住这个公式,两项资产收益率的协方差=两项资产收益率之间的相关系数×第一种资产收益率的标准差×第二种资产收益率的标准差。

协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。

协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。 [1] 在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 [1] 。

定义:

期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:

从直观上来看,协方差表示的是两个变量总体误差的期望。

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值时另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;如果两个变量的变化趋势相反,即其中一个变量大于自身的期望值时另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。

但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。

协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。

协方差为0的两个随机变量称为是不相关的。

两个相互独立随机变量乘积的期望等于这两个随机变量期望的乘积. 离散情况下怎么证明?的相关图片

两个相互独立随机变量乘积的期望等于这两个随机变量期望的乘积. 离散情况下怎么证明?

可以先令Z=X+Y,然后表示成两个矩阵乘积的形式,这样就可以求出Z的分布,然后利用和的方差等于方差的和减两倍的协方差就可以求出协方差了。

相关函数的协方差的性质的相关图片

相关函数的协方差的性质

如果这三个随机变量互相是独立的,你这个式子才成立。你先考虑两个独立变量的情况,E(A*B)=COV(A,B)+E(A)*E(B)。

因为独立,所以协方差COV(A,B)=0,所以E(A*B)=E(A)*E(B)。再把两个变量的情况推广到三个,就能得出E(A*B*C)=E(A)*E(B)*E(C)。

扩展资料:

用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。

因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局或后两局中任意赢一局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎;

而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。

可见,虽然不能再进行比赛,但依据上述可能性推断,甲乙双方最终胜利的客观期望分别为75%和25%,因此甲应分得奖金的100*75%=75(法郎),乙应分得奖金的的100×25%=25(法郎)。这个故事里出现了“期望”这个词,数学期望由此而来。

参考资料来源:百度百科-数学期望。

请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)?

协方差的性质:

1、Cov(X,Y)=Cov(Y,X);

2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);

3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。

由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。

协方差函数定义为:

若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:

扩展资料

协方差反映了两个变量之间的相关程度:

协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。

反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。

当x与y变化趋势一致时,两个变量与自身期望之差同为正或同为负,其乘积必然为正,所以其协方差为正;反之,其协方差为负。所以协方差的正负性反映了两个变量的变化趋势是否一致。

再者,当x和y在某些时刻变化一致,某些时刻变化不一致时,在第一个点,x与y虽然变化,但是y的变化幅度远不及x变化幅度大,所以其乘积必然较小。

在第二个点,x与y变化一致且变化幅度都很大,因此其乘积必然较大,在第三个点,x与y变化相反,其乘积为负值,这类点将使其协方差变小,因此,我们可以认为协方差绝对值大小反映了两个变量变化的一致程度。因此,两个变量相关系数的定义为协方差与变量标准差乘积之比。

参考资料来源:百度百科-协方差。

原文地址:http://www.qianchusai.com/%E4%B8%A4%E4%B8%AA%E7%8B%AC%E7%AB%8B%E5%8F%98%E9%87%8F%E4%B9%98%E7%A7%AF%E7%9A%84%E5%8D%8F%E6%96%B9%E5%B7%AE.html

亲人久别重逢的作文800,亲人久别重逢的作文800字高中

亲人久别重逢的作文800,亲人久别重逢的作文800字高中

安森美0302和0281功放管参数,安森美功放管的功放机有哪些

安森美0302和0281功放管参数,安森美功放管的功放机有哪些

渣受洗白生存手册

渣受洗白生存手册

冰心的抒情散文短篇,冰心抒情诗大全简短的

冰心的抒情散文短篇,冰心抒情诗大全简短的

651是什么意思,电脑连不上网出现651是什么意思

651是什么意思,电脑连不上网出现651是什么意思

frpp,frpp双壁加筋波纹管

frpp,frpp双壁加筋波纹管

令自己心儿碎碎跳的事,心碎了就告诉自己碎碎平安

令自己心儿碎碎跳的事,心碎了就告诉自己碎碎平安

8m815航班,8l9885航班实时

8m815航班,8l9885航班实时

华为p15级别待遇,华为 15级 真实待遇

华为p15级别待遇,华为 15级 真实待遇

普通作文200字,普通作文200字三年级

普通作文200字,普通作文200字三年级