积分上限是x的平方是么,
那么对∫(上限x^2,下限常数a) f(t) dt 求导就得到。
f(x^2) *(x^2)'。
即2x *f(x^2)
换元时积分上下限也要变.令u=x^2-t,则积分上限t=x^2变成u=x^2-x^2=0,积分下限t=0变成u=x^2-0=x^2.再互换上下限,重新变成上限u=x^2下限u=0,但会多出负号,刚好和du=d(x^2-t)=-dt中的负号相互抵消。
=2x*sin(x^2+1)
公式:
[∫(u(x), v(x)) f(t)dt]'=u'(x)f(u(x))-v'(x)f(v(x))。
(u(x), v(x))为积分区间。
f(t)为被积函数
定积分的求法如下:
第一类是凑微分,例如xdx=1/2dx²,积分变量仍然是x,只是把x²看着一个整体,积分限不变。
第二类换元积分法,令x=x(t),自然有dx=dx(t)=x'(t)dt,这里引入新的变量,积分限要由x的变换范围换成t的变化范围。
第三类分部积分法,设u=u(x),v=v(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式。
定积分的定义如下:
设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[x0,x1], (x1,x2], (x2,x3], …, (xn-1,xn],其中x0=a,xn=b。可知各区间的长度依次是:△x1=x1-x0,在每个子区间(xi-1,xi]中任取一点ξi(1,2,...,n),作和式。
该和式叫做积分和,设λ=max{△x1, △x2, …, △xn}(即λ是最大的区间长度),如果当λ→0时,积分和的极限存在,则这个极限叫做函数f(x) 在区间[a,b]的定积分。
并称函数f(x)在区间[a,b]上可积。其中:a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。之所以称其为定积分,是因为它积分后得出的值是确定的,是一个常数, 而不是一个函数。
1、若是积分题目,没有办法,只能积分后,分别代入上下限计算;
2、若是求导题目,就请参考下面的图片说明,计算导数;
3、若看不清楚,请点击放大,图片会更加清晰。