答案是D,堆排序。
选项中的四种排序方法的最坏时间复杂度、最好时间复杂度 、平均时间复杂度分别为:
A、冒泡排序: O(n2) 、O(n) 、O(n2)。
B、快速排序: O(n2) 、O(nlog2n)、 O(nlog2n)。
C、插入排序: O(n2)、 O(n) 、O(n2)。
D、堆排序: O(nlog2n)、 O(nlog2n)、 O(nlog2n)。
所以,在最坏情况下,冒泡排序时间复杂度=快速排序时间复杂度=插入排序时间复杂度= O(n2)>堆排序时间复杂度= O(nlog2n)。答案选D。
扩展资料:
堆排序是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
堆排序中堆的操作:
在堆的数据结构中,堆中的最大值总是位于根节点(在优先队列中使用堆的话堆中的最小值位于根节点)。堆中定义以下几种操作:
最大堆调整:将堆的末端子节点作调整,使得子节点永远小于父节点。
创建最大堆:将堆中的所有数据重新排序。
堆排序:移除位在第一个数据的根节点,并做最大堆调整的递归运算。
参考资料:百度百科-堆排序
在冒泡排序,插入排序,选择排序,快速排序中,在最最坏情况下,快速排序的时间复杂为O(n2) ,插入排序O(n2),选择排序O(n2),冒泡排序O(n2)。所以ABCD时间复杂度是一样的。
知识拓展:
在快速排序算法中,最为关键的就是选取一个基值,将数组分为大于基值以及小于基值两部分,并返回基值所以在位置以利用于递归划分。
对数组a,设需要划分的其中一段为a[p]~a[r],我们期待的结果是得到一个q,其中p<=q<=r,使得a[p]~a[q-1]<=a[q]<=a[q+1]~a[r],这个时候原先的一段数组被分成了三部分。
首先,设基值为这段数组的最后一个元素a[r],我们希望最后得到的结果是a[r]现在对应的值在算法结束后可以排在比他大和小的两部分的中间爱。
然后令i=p-1; j=p,当发现有a[j]>x时,j继续前进,不需要任何移动。当发现a[j]<=x时,我们需要将这个元素放到小于基值的一边,于是将i自加1,并交换此时a[i],与a[j]的元素,然后j自加1。这个时候i指向的是比基值小的那段数据的最后一个元素,j指向的是第一个还没有判断的剩余元素。
上面一步不断循环直到j指向了r,此时只剩下r没有和基值判断了,而a[r]本来就是基值,而除了a[r]以外,a[p]~a[i]是小于基值的部分,a[i+1]~a[r-1]是大于基值的部分,所以此时只需交换a[i+1]和a[r]即可。
由于对数组a从头到尾扫描一次就可以得到结果,因此这一部分算法复杂度为o(n)。
最坏情况下时间复杂度不是n(n-1)/2的算法是【直接插入排序】
直接插入排序(Straight Insertion Sort)是一种最简单的排序方法,其基本操作是将一条记录插入到已排好的有序表中,从而得到一个新的、记录数量增1的有序表。
1.简单方法
首先在当前有序区R[1..i-1]中查找R[i]的正确插入位置k(1≤k≤i-1);然后将R[k..i-1]中的记录均后移一个位置,腾出k位置上的空间插入R[i]。
注意:若R[i]的关键字大于等于R[1..i-1]中所有记录的关键字,则R[i]就是插入原位置。
2.改进的方法
一种查找比较操作和记录移动操作交替地进行的方法。具体做法:
将待插入记录R[i]的关键字从右向左依次与有序区中记录R[j](j=i-1,i-2,…,1)的关键字进行比较:
① 若R[j]的关键字大于R[i]的关键字,则将R[j]后移一个位置;
②若R[j]的关键字小于或等于R[i]的关键字,则查找过程结束,j+1即为R[i]的插入位置。
关键字比R[i]的关键字大的记录均已后移,所以j+1的位置已经腾空,只要将R[i]直接插入此位置即可完成一趟直接插入排序。
二叉排序树在最坏的情况下查找最小值的时间复杂度是O(n)。
一棵空树,或者是具有下列性质的二叉树:若左子树不空,则左子树上所有结点的值均小于它的根结点的值;若右子树不空,则右子树上所有结点的值均大于它的根结点的值;左、右子树也分别为二叉排序树;没有键值相等的结点。
首先执行查找算法,找出被插结点的父亲结点。判断被插结点是其父亲结点的左、右儿子。将被插结点作为叶子结点插入。若二叉树为空。则首先单独生成根结点。
扩展资料:
与次优二叉树相对,二叉排序树作为一种动态树表,特点是:树的结构通常不是一次生成的,而是在查找过程中,当树中不存在关键字等于给定值的结点时再进行插入。
新插入的结点一定是一个新添加的叶子结点,并且是查找不成功时查找路径上访问的最后一个结点的左孩子或右孩子结点。
从时间复杂度看,bai所有内部排序du方法可以分为两类。zhi。
1.插入排序 选择排序 起泡排序。
其时dao间复杂度为O(n2);
2.堆排序 快速排序 归并排序。
其时间复杂度为O(nlog2n)。
这是就平均情况而言的,如果从最好的情况考虑,
则插入排序和起泡排序的时间复杂度最好,为O(n),
而其他算法的最好情况同平均情况大致相同。
如果从最坏的情况考虑,快速排序的时间复杂度为O(n2),插入排序和起泡排序虽然同平均情况相同,但系数大约增加一倍,运行速度降低一半,而选择排序、堆排序和归并排序则影响不大。