函数凹凸性的判断方法是:
看导数,代数上,函数一阶导数为负,二阶导数为正(或者一阶正,二阶负),便是凸的,一阶与二阶同号为凹。函数在凹凸性发生改变的点称为拐点,拐点的二阶导数为0或不存在二阶导数。
1、凹函数定义:设函数y =f (x ) 在区间I 上连续,对x 1, x 2∈I ,若恒有f (则称y =f (x ) 的图象是凹的,函数y =f (x ) 为凹函数。
2、凸函数定义:设函数y =f (x ) 在区间I 上连续,对x 1, x 2∈I ,若恒有f (则称y =f (x ) 的图象是凸的,函数y =f (x ) 为凸函数。
扩展资料:
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界 [3] 。
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间I上是单调递增的。
如果对于区间I上任意两点x1及x2,当x1<x2时,恒有f(x1)>f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。
函数凹凸性的判断方法是:看导数,代数上,函数一阶导数为负,二阶导数为正(或者一阶正,二阶负),便是凸的,一阶与二阶同号为凹。函数在凹凸性发生改变的点称为拐点,拐点的二阶导数为0或不存在二阶导数。
1、凹函数定义:设函数y =f (x ) 在区间I 上连续,对x 1, x 2∈I ,若恒有f (则称y =f (x ) 的图象是凹的,函数y =f (x ) 为凹函数。
2、凸函数定义:设函数y =f (x ) 在区间I 上连续,对x 1, x 2∈I ,若恒有f (则称y =f (x ) 的图象是凸的,函数y =f (x ) 为凸函数。
凹函数的性质:
如果一个可微函数f它的导数f'在某区间是单调上升的,也就是二阶导数若存在,则在此区间,二阶导数是大于零的,f就是凹的;即一个凹函数拥有一个下跌的斜率(当中下跌只是代表非上升而不是严谨的下跌,也代表这容许零斜率的存在)。
如果一个二次可微的函数f,它的二阶导数f'(x)是正值(或者说它有一个正值的加速度),那么它的图像是凹的;如果二阶导数f'(x)是负值,图像就会是凸的。当中如果某点转变了图像的凹凸性,这就是一个拐点。
如果凹函数(也就是向上开口的)有一个“底”,在底的任意点就是它的极小值。如果凸函数有一个“顶点”,那么那个顶点就是函数的极大值。
函数的凹凸性的判断方法有定义法:
设函数f(x)在区间I上定义,若对I中的任意两点x1和x2,和任意λ∈(0,1),都有。
f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),。
则称f为I上的凹函数.
若不等号严格成立,即“<”号成立,则称f(x)在I上是严格凹函数。
如果"≤“换成“≥”就是凸函数。类似也有严格凸函数。
设f(x)在区间D上连续,如果对D上任意两点a、b恒有。
f((a+b)/2)<(f(a)+f(b))/2。
那么称f(x)在D上的图形是(向下)凹的(或凹弧);如果恒有。
f((a+b)/2)>(f(a)+f(b))/2。
那么称f(x)在D上的图形是(向上)凸的(或凸弧)
扩展资料:
函数的凹凸性是描述函数图像弯曲方向的一个重要性质,其应用也是多方面的。
这个定义从几何上看就是:
在函数f(x)的图象上取任意两点,如果函数图象在这两点之间的部分总在连接这两点的线段的下方,那么这个函数就是凹函数。同理可知,如果函数图像在这两点之间的部分总在连接这两点线段的上方,那么这个函数就是凸函数。
如果函数f(x)在区间I上二阶可导,则f(x)在区间I上是凸函数的充要条件是f''(x)≤0;f(x)在区间I上是凹函数的充要条件是f''(x)≥0。
参考资料:百度百科-函数的凹凸性。
1、凹函数是一个定义在某个向量空间的凹子集C(区间)上的实值函数f。
设f为定义在区间I上的函数,若对I上的任意两点X1,X2和任意的实数λ∈(0,1),总有。
f(λx1+(1-λ)x2)≤(≥)λf(x1)+(1-λ)f(x2),。
则f称为I上的上(下)凹函数。
判定方法可利用定义法、已知结论法以及函数的二阶导数。
其二阶导数在区间上恒大于0,就称为严格凹函数。
2、凸函数是一个定义在某个向量空间的凸子集C(区间)上的实值函数f,而且对于凸子集C中任意两个向量x1,x2,f((x1+x2)/2)≤(f(x1)+f(x2))/2。
于是容易得出对于任意(0,1)中有理数p,f(px1+(1-p)x2)≤pf(x1)+(1-p)f(x2)。如果f连续,那么p可以改成任意(0,1)中实数。
若这里凸集C即某个区间I,那么就是:设f为定义在区间I上的函数,若对I上的任意两点X1,X2和任意的实数λ∈(0,1),总有。
f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),。
则f称为I上的凸函数。
判定方法可利用定义法、已知结论法以及函数的二阶导数。
对于实数集上的凸函数,一般的判别方法是求它的二阶导数,如果其二阶导数在区间上非负,就称为凸函数。(向下凸)
如果其二阶导数在区间上恒大于0,就称为严格凸函数。
1、已知函数表达式,但不容易做出图形是可以利用其二阶导数符号来判定函数的凹凸性。
y''>0是凹函数
y''<0是凸函数
2、如果可以从函数的表达式入手做出其草图,也可从图形中判断其凹凸性,开口向下为凸,开口向上为凹。
3、利用曲线与曲线上切线位置关系也可判断函数的凹凸性:切线总是位于曲线上方,则曲线为凸;切线总位于曲线下方,则曲线为凹。