设A是n阶方阵,如果存在数m和非零n维列向量x,使得Ax=mx成立,则称m是A的一个特征值。
系数行列式|A-λE|称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。
¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。
扩展资料
性质
性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根)。
性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
(1)当矩阵是大于等于二阶时:
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^x+y,x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。
主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^x+y=1,一直是正数,没必要考虑主对角元素的符号问题。
(2)当矩阵的阶数等于一阶时,伴随矩阵为一阶单位方阵。
(3)二阶矩阵的求法口诀:主对角线元素互换,副对角线元素变号。
扩展资料:
转置
把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵(A^T),这一过程称为矩阵的转置。
矩阵的转置满足以下运算律:
矩阵共轭
矩阵的共轭定义为:
.一个2×2复数矩阵的共轭(实部不变,虚部取负)如下所示:
则
(1)当矩阵是大于等于二阶时:
主对角元素是将原矩阵该元素所在行列去掉再求行列式,非主对角元素是原矩阵该元素的共轭位置的元素去掉所在行列求行列式乘以(-1)^x+y,x,y为该元素的共轭位置的元素的行和列的序号,序号从1开始。
主对角元素实际上是非主对角元素的特殊情况,因为x=y,所以(-1)^x+y=1,一直是正数,没必要考虑主对角元素的符号问题。
(2)当矩阵的阶数等于一阶时:
伴随矩阵为一阶单位方阵。
(3)二阶矩阵的求法口诀:
主对角线元素互换,副对角线元素变号。
伴随矩阵的其他知识
在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果二维矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数,对多维矩阵也存在这个规律。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。
把矩阵的各个元素都换成它相应的代数余子式将所得到的矩阵转置便得到A的伴随矩阵。
根据伴随矩阵的元素的定义:每个元素等于原矩阵去掉该元素所在的行与列后得到的行列式的值乘以(-1)的i+j次方的代数余子式。
其实把它的立功是把它计算出来,把它分两组去计算的话,可以得出上面的一个结论。
二阶矩阵
的特征值方程就是一个二次方程(a-x)(d-x)。
-bc=0,用二次方程求根公式就可以得到了。
二矩阵求逆矩阵:
若ad-bc≠哦,则:
扩展资料:
初等变换法
求元索为具体数字的矩阵的逆矩阵,常用初等变换法‘如果A可逆,则A’可通过初等变换,化为单位矩阵 I ,
即存在初等矩阵使 :
(1) ;
(2)用 右乘上式两端,得: ;
比较(1)、(2)两式,可以看到当A通过初等变换化为单位处阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵 。
用矩阵表示:
这就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法。需要注意的是,在作初等变换时只允许作行初等变换。同样,只用列初等变换也可以求逆矩阵。
参考资料:百度百科——矩阵求逆。
原文地址:http://www.qianchusai.com/%E4%BA%8C%E9%98%B6%E7%9F%A9%E9%98%B5%E5%85%AC%E5%BC%8F.html