垃圾焚烧炉
双语对照
例句:
1.
In recent years, chinese cities have tried to build waste incinerators, aiming toburn the trash while producing electricity. 。
近几年,中国的城市已尝试建造垃圾焚化炉,在燃烧垃圾的同时进行发电。
垃圾焚烧炉
双语对照
例句:
1.
In recent years, chinese cities have tried to build waste incinerators, aiming toburn the trash while producing electricity. 。
近几年,中国的城市已尝试建造垃圾焚化炉,在燃烧垃圾的同时进行发电。
垃圾焚烧炉
双语对照
例句:
1.
In recent years, chinese cities have tried to build waste incinerators, aiming toburn the trash while producing electricity. 。
近几年,中国的城市已尝试建造垃圾焚化炉,在燃烧垃圾的同时进行发电。
Today the quality of our natural environment has become an important issue. The world population is rising so quickly that the world has become too crowded. 。
We are using up our natural resources and at the same time polluting our environment with dangerous chemicals. If we continue to do this, life on earth cannot survive. 。
Concerned people have made some progress in environmental protection. Governments of many countries have established laws to protect the air, forests and sea resources and to stop environmental pollution. 。
Still more measures should be taken to solve environmental problems. People should be further educated to recognize the importance of the problems, to use modern methods of birth control, to conserve our natural resources and recycle our products. We are sure that we can have a better and cleaner place in the future. 。
今天,我们的自然环境质量已经成为一个重要问题。世界人口增长如此之快,世界已变得过于拥挤。
我们正在利用我们的自然资源,同时污染的危险化学品的环境。如果我们继续做这个地球上,生活无法生存。
有关人士取得了一些在环境保护方面的进展。许多国家的政府已建立了法律保护,空气,森林和海洋资源,并停止对环境的污染。
但更应采取措施来解决环境问题。人们应该进一步的教育,认识到问题的重要性,使用现代节育方法,以保护我们的天然资源和循环利用我们的产品。我们相信,我们可以有一个更加美好,更清洁的地方。
Effect of microwave radiation on Bacillus subtilis spores 。
INTRODUCTION
The use of microwave radiation for bacterial killing is 。
particularly appealing for sterilization of hospital waste 。
(Pellerin 1994; Tata and Beone 1995; Atwater et al. 1997; 。
Sasaki et al. 1998a) and industrial food processing (Deng 。
et al. 1990; Wang 1993; Sato et al. 1996; Kozempel et al. 。
1997; Kuchma 1997; Pagan et al. 1998; Vaid and Bishop 。
1998) because of its low cost. Hospital waste sterilization is a 。
problem of increasing importance and a wide variety of 。
efficacious sterilization procedures are currently used, such 。
as stoving, high-pressure steaming and irradiation with 。
ultraviolet or c-rays. Traditional incinerators are very 。
expensive, particularly when used in accordance with the 。
increasingly stringent anti-air-pollution standards; electron 。
beams require extremely expensive machinery, and sterilization 。
equipment using c-ray sources is strictly regulated 。
for safety and control restraints. In industrial food processing, 。
microwave energy has been used to pasteurize and 。
sterilize food in a shorter time compared with conventional 。
methods (Heddleson et al. 1996; Hammad 1998; Aziz et al. 。
2002). Therefore, microwave radiation is regarded as a valid 。
alternative method for killing bacteria because of its 。
effectiveness, commercial availability, and lower cost compared 。
with other technologies (Wu 1996; Pierson and Sauer 。
1997; Sasaki et al. 1998b). 。
Although the efficacy of microwaves in microbial destruction 。
has been reported in many studies, the actual mechanism 。
of bacterial killing has not been interpreted in the 。
same way. Two main conflicting conclusions emerge: some 。
researchers attribute the killing effect exerted by microwaves 。
to the heat the waves generate (Yeo et al. 1999), while others 。
propose a nonthermal effect due to microwave energy itself 。
(Barnes and Ho 1977; Salvatorelli et al. 1996; Wu 1996). 。
Still to be addressed is whether microwave radiation (as a 。
electromagnetic field, E-field) influences the chemistry of 。
biological molecules and the assembly of structural cell 。
components independently of the thermal effect generated 。
by waves. The lack of standardized experimental conditions 。
providing exposure of samples to a defined and constant 。
microwave E-field has contributed to the debate. Indeed, the 。
applicators most frequently used to kill/inactivate bacteria 。
with microwaves are multimode generators (Barnes and Ho 。
1977; Salvatorelli et al. 1996), similar to microwave ovens. 。
These devices have several intrinsic disadvantages, primarily 。
the nonuniform distribution, in time and in space, of the 。
microwave E-field inside the metal enclosure. Moreover, 。
they do not allow accurate measurements of either the 。
temperature or the intensity and direction of the E-field in 。
proximity to the samples. Therefore, commercial devices are 。
not adequate for determination of the intensity of the E-field 。
and the time-duration of microwave application that leads to 。
complete microbial inactivation. These data are of intrinsic 。
microbiological importance and are essential for the design 。
of waste or food sterilization plants based on microwave 。
radiation.
The single-mode, nonresonant waveguide applicator described 。
herein allowed a uniform and measurable distribution 。
of both the microwave E-field and the temperature value 。
applied to bacterial samples to be obtained. This device was 。
used to expose Bacillus subtilis spores to an E-field, well 。
defined both in amplitude and direction, for several time 。
intervals. The survival of spores subjected to microwave 。
radiation was compared with that registered after conventional 。
heating. The spore damage induced by both treatments 。
was investigated by electron microscopy and by measuring the 。
amount of dipicolinic acid (DPA) released by treated spores. 。
MATERIALS AND METHODS 。
Microwave apparatus 。
The device was constructed from standard rectangular 。
waveguides and coaxial components (Fig. 1) with a 。
magnetron oscillator equipped with indicators of forward 。
and reflected power (100 W of maximum continuous wave 。
output power at 2Æ45 GHz) as the source of the microwaves. 。
A rectangular waveguide (7Æ2 • 3Æ4 cm) was connected 。
to another identical adapter through a brass 。
waveguide straight section designed to hold a glass test 。
tube of 6 mm (outer diameter) •4 mm (inner diameter) 。
•66 mm (length) for loading with bacterial samples 。
(Fig. 1a). The axis of the tube made an angle of 30 。
degrees with the direction of propagation of the E-field 。
(Fig. 1b); such a configuration enabled the propagation of 。
microwaves to the test tube placed into the waveguide, 。
with a reflected power not greater than 8% of the input 。
power. A double stub tuner was used to reduce unwanted 。
power reflections returning to the magnetron source. The 。
microwave switch had a switching time of a few 10s of ms, 。
thus allowing the application of microwave power pulses 。
for selected time durations. Two small empty borosilicate 。
glass spheres (4 mm outer diameter) were introduced into 。
the test tubes and held to the bottom by a coiled, thinwalled 。
teflon (polytetrafluorethylene, PTFE) tube (0Æ9 mm 。
diameter •50 mm), to prevent outflow of samples during 。
boiling (Fig. 1c). The test tubes were closed with PTFE 。
stoppers with a 1-mm diameter hole. The temperature 。
inside the test tubes was measured with a fibre-optic 。
thermometer calibrated before each measurement. This 。
sensor has a resolution of 0Æ1_C, a response time of about 。
0Æ2 s in water, and is not perturbed by the intense 。
microwave E-field. With this set-up, the microwave Efield 。
applied to samples could be determined easily by 。
calorimetric measurements. A commercial multimode 。
oven, with an internal capacity of 34Æ5 • 34 • 23 cm and 。
a nominal working power of 750 W at 2Æ45 GHz, was also 。
used for comparison. In the commercial oven, the time 。
required for aqueous solutions to reach the boiling 。
temperature was measured by placing the test tubes filled 。
with water in five different randomly selected positions, in 。
a central location inside the oven. 。
Preparation of B. subtilis spores 。
Spores of B. subtilis ATCC 6633 were used throughout the 。
study as they are reported to be optimal indicators for 。
microwave sterilization assays (Wu 1996). Uncontaminated 。
spore suspensions were prepared in distilled water as 。
previously described (Senesi et al. 1991), stored at 4_C, 。
and used within 15 days. Care was taken to ensure that the 。
bacterial suspensions were constituted with 100% viable 。
were transferred into test tubes, which contained two 。
borosilicate-glass spheres and a thin walled PFTE tube. 。
Test tubes were closed with PFTE stoppers, containing a 。
small-diameter hole, and were gently shaken to eliminate air 。
bubbles. One half of the samples was microwave-irradiated 。
for several time intervals (2, 4, 6, 8, 10, 14 and 20 min). The 。
other half was conventionally heated for the same time 。
intervals by immersion in a boiling water bath. After each 。
treatment, spore suspensions were promptly plunged into an 。
ice water bath. Experiments were performed in triplicate 。
and repeated five times on separate days. Irradiated and 。
heated spore samples were serially diluted with distilled 。
water and 100 ll of each dilution was seeded in triplicate 。
onto Luria-Bertani agar plates. CFUs were counted after a 。
24-h incubation at 37_C. Incubation for an additional 24 h 。
led to a negligible increase in the number of CFUs (lower 。
than 0Æ001%). Control samples contained spores that did not 。
undergo any treatment. 。
微波放射线对杆菌 subtilis 户外运动的效果 。
介绍
微波放射线的使用为细菌的杀害是 。
对于医院废物的消毒是特别引起兴趣的 。
(Pellerin 1994; Tata 和 Beone 1995; Atwater 以及其他人。 1997; 。
Sasaki 以及其他人。 1998 一) 和工业的食品加工 (Deng 。
以及其他人。 1990; 王 1993 世; Sato 以及其他人。 1996; Kozempel 以及其他人。
1997; Kuchma 1997; 异教徒以及其他人。 1998; Vaid 和主教 。
1998) 因为它的低成本。 医院废物消毒是一 。
逐渐增加重要的问题和各式各样的 。
有效的消毒程序现在被用, 如此的 。
当做以火炉温烤, 施以高压蒸发和发光由于 。
紫外线或 c-光线。 传统的焚烧装置是真正的 。
贵的, 特别地当用符合那
逐渐迫切反空气污染标准; 电子 。
光线需要极端地贵的机器 , 和消毒 。
使用 c-光线的来源设备严格地被管理 。
因为安全和控制抑制。 在工业的食品加工中, 。
微波能源已经用来进行低温杀菌和 。
使成不毛在短时间内被相较的食物传统的 。
方法 (Heddleson 以及其他人。 1996; Hammad 1998; Aziz 以及其他人。
2002)。 因此, 微波放射线被视为一有效的 。
为杀害的细菌替代选择方法因为它的 。
效力,商业的有效和比较低的费用比较 。
藉由其他的技术 (Wu 1996; Pierson 和 Sauer 。
1997; Sasaki 以及其他人。 1998b). 。
虽然微生物的破坏的微电波的效能 。
已经在许多研究被报告, 真实的机制 。
细菌的杀害没有被解释在那
相同的方法。 二个主要的不一致的结论浮现: 一些 。
研究员归于被微电波发挥的杀害的效果 。
对热波产生 (Yeo 以及其他人。 1999), 其它 。
由于微波能源本身计画非热的效果 。
(巴恩斯和引人注意 1977; Salvatorelli 以及其他人。 1996; Wu 1996)。
使被演说安静是否微波放射线 (当做一 。
电磁场, 电子领域) 影响化学 。
生物学的分子和结构细胞的集会 。
成份独立地热效果产生了
藉着波。 缺乏被标准化的实验情况 。
提供样品的暴露给一定义和持续的 。
微波电子领域已经成为辩论的因素。 的确, 那 。
施力器最时常过去一直杀/钝化细菌 。
藉由微电波是多模态产生器 (巴恩斯和引人注意 。
1977; Salvatorelli 以及其他人。 1996), 类似微波炉。
这些装置有一些本质的缺点, 主要地 。
不均匀分配, 及时和在空间, 那 。
在金属制的附件内的微波电子领域。 而且, 。
他们不允许正确测量也那
温度或强烈和电子领域的方向在 。
对样品的接近。 因此, 商业的装置是 。
对于电子领域的强烈的决心是不是适当 。
而且时间-带领的微波申请的期间到 。
完全的微生物的 inactivation。 这些数据是本质的 。
microbiological 重要和对设计是必要的 。
废物或以微波为基础的食物消毒厂 。
放射线。
单一模态又非共呜的波导施力器描述 。
在此允许了统一的和可测量的分配 。
微波电子领域和温度价值
适用于细菌的样品被获得。 这一个装置是 。
过去一直使杆菌 subtilis 户外运动暴露在一个电子领域, 好的 。
在广阔和方向都定义了, 对于好几时间 。
间隔。 户外运动的生存对微波服从了 。
在登记了之后的放射线被相较传统的 。
暖气。 户外运动损害感应藉着两者治疗 。
被电子显微镜使用调查了和藉由测量那 。
dipicolinic 酸 (DPA) 的数量藉着对待的户外运动发表了。
材料及方法
微波装置
装置由标准的构成矩形的
波导和同轴的成份 (图 1) 由于一 。
被装备指示器的磁电管振动者向前的 。
而且反映了力量 (最大连续的波的 100 W 。
输出力量在 2 点?45 十亿赫兹) 如微电波的来源。
一个矩形的波导 (7?2? 3?4 cm) 被连接 。
对另外的一个同一的适配器经过一个胸罩 。
波导直的区段设计支撑一个玻璃测试 。
6 毫米 (外部的直径) 的管 ?4 毫米 (内部的直径) 。
?以细菌的样品载入的 66 毫米 (长度) 。
(图 1 一). 管的轴制造了一个 30 的角度 。
和电子领域的增殖的方向的程度 。
(图 1b); 如此的一个结构使增殖能够了 。
对测试管的微电波进入波导之内放置了, 。
藉由不比 8% 大的输入的被反映的力量 。
力量。 两倍的断株调音师用来减少不必要的 。
使回到磁电管来源的反映有力量。 那 。
微波开关有了 ms 的转变时间的一些 10s, 。
如此允许微波力量脉膊的申请
挑选的时间期间。 二小的空 borosilicate 。
玻璃球体 (4 毫米外部的直径) 被介绍进入 。
测试管和拿着了到底部被一盘绕, thinwalled 。
teflon(polytetrafluorethylene, PTFE) 管 (0?9 毫米 。
直径 ?50 毫米), 避免样品的流出在 。
沸腾的 (图 1c). 测试管与 PTFE 一起关闭 。
和一个 1 毫米直径的阻止人挖洞。 温度 。
在测试管内与一个纤维一起测量-光学的 。
温度计在每个测量之前校正了。 这 。
感应器有一个 0 的决议?1_C, 回应时间有关 。
0?在水的 2 年代, 和没被扰乱被那强烈的 。
微波电子领域。 藉由这组-提高, 微波 Efield 。
适用于样品可能容易地被决定被 。
calorimetric 测量。 一个商业的多模态 。
烤箱, 藉由 34 的内在能力?5? 34? 23 cm 和 。
750 W 的名义上工作力量在 2 点?45 十亿赫兹, 也是 。
为比较用。 在商业的烤箱中, 时间 。
需要了让水的解决到达那沸腾的 。
温度被藉由放置被填充的测试管测量 。
藉由五个不同的任意挑选的位置水, 在 。
在烤箱内的一个中央的位置。
B 的准备。 subtilis 户外运动 。
B 的户外运动。 subtilis ATCC 6633 到处被用那 。
当他们被报告是最佳的指示器的时候,学习 。
微波消毒化验 (Wu 1996) 。 不污染 。
户外运动中止在蒸馏的水被准备当做 。
先前描述了 (Senesi 以及其他人。 1991), 储存了在 4_C, 。
而且在 15 天之内用了。 照料被采取确定那 。
细菌的中止与 100% 一起构成能养活的 。
被转移进测试管, 这包含二
borosilicate-玻璃的球体和瘦的被墙壁的 PFTE 管。
测试管与 PFTE 阻止的人一起关闭, 包含一 。
小的-直径挖洞, 而且逐渐地被摇动除去空气 。
泡沫。 一半的样品是微波-照耀 。
好几时间间隔 (2,4,6,8,10,14 和 20 分钟). 那 。
其他的一半对于同时间照惯例被加热 。
在煮沸的浸渍的间隔加水给沭浴。 在每个之后 。
治疗, 户外运动中止敏捷地陷入一 。
冰冻水沭浴。 实验在一式三份被运行 。
而且每天在分开上重复了五次。 照耀了和 。
热的户外运动样品连续地与蒸馏一起冲淡 。
水和每个稀释的 100 ll 在一式三份被播种 。
在 Luria-Bertani 的琼脂之上镀金。 CFUs 在被计算之后一 。
在 37_C 的 24 h 的抱蛋。 为另外的 24 h 的抱蛋 。
导致了 CFUs 的数字的可以忽略的增加 (比较低的 。
超过 0?001%). 控制样品包含户外运动那不 。
遭受任何的治疗。
4 Technical Requirements。
4.1 siting principles。
4.1.1 siting hazardous waste incineration plants should comply with the local urban planning and environmental protection programs and comply with local air pollution control, water conservation, natural ecological protection requirements.。
4.1.2 shall be determined on the basis of environmental impact assessment of the conclusions of hazardous waste incineration plant site location and its distance from the surrounding population, and by the administrative department of environmental protection has the power to approve the ratification, and as a basis for planning control.。
4.1.3 When hazardous waste incineration plant site to conduct an environmental impact assessment should be a focus of harmful substances leaking hazardous waste incineration plant may produce various facilities, air pollutants (including odorous substances) production and diffusion as well as possible the risk of accidents and other factors, according to its environment ribbon category in the region, a comprehensive evaluation of its impact on the surrounding environment, the health of the population live, daily life and production activities, determine incinerators and permanent residents living spaces, agricultural land, surface water bodies and a reasonable relationship between the location of other sensitive objects。
4.2 incinerated requirements。
4.2.1 In addition to explosive and radioactive hazardous waste incineration can be carried outside.。
4.2.2 incineration of hazardous waste to deal with hazardous waste incineration needed to be compatible, so calorific value, the main organic component content of harmful organic chlorine content, heavy metal content, sulfur content, moisture and ash disposal facilities to meet the design incineration requirements, and as far as possible to ensure the stability of the waste into the furnace of physical and chemical properties.。
4.2.3 Incineration of medical waste should be collected according to the characteristics of various types of medical waste, control stability into the furnace of medical waste.。
Technical Requirements 4.3 incinerator facilities subject。
4.3.1 The main facilities include incineration of hazardous waste storage facilities, incinerators, and other incinerator exhaust.。
4.3.2 hazardous waste storage requirements。
4.3.2.1 Storage of hazardous waste should comply with GB 18597 standards.。
4.3.2.2 Construction of hazardous waste storage sites should consider incineration residues and incineration ash scratch.。
4.3.2.3 Protection hazardous waste storage sites and incineration facilities shall comply with fire safety requirements.。
4.3.3 Hazardous Waste Incinerator technical requirements。
4.3.3.1 hazardous waste incinerator technical performance indicators should meet the requirements of Table 1.。
Table 1 incinerator technical performance indicators。
4.3.3.2 hazardous waste incinerator during the operation to ensure that the system is in the vacuum state, to avoid harmful gases to escape.。
4.3.3.3 Hazardous waste incinerators must be equipped with exhaust gas purification systems, alarm systems and emergency equipment.。
4.3.4 hazardous waste incinerator exhaust requirements。
4.3.4.1 hazardous waste incinerator exhaust height should be determined according to the EIA.。
4.3.4.2 hazardous waste incineration facility if more exhaust sources, should focus to a multi-cylinder exhaust emissions or Assembling emissions.。
4.3.4.3 hazardous waste incinerator exhaust shall GB / T 16157 requirements, set up a permanent sampling holes, and install facilities for sampling and measurement.。
5 emission control requirements。
5.1 June 30, 2016, the existing hazardous waste incineration facilities, the concentration of pollutants in the flue gas emission limits specified in the implementation of GB18484-2001.。
5.2 Since July 1, 2016, the existing hazardous waste incineration facilities pollutant concentrations in flue gas emission limits specified in Table 2 execution.。
5.3 Since July 1, 2015, the new hazardous waste incineration facilities concentrations of pollutants in flue gas emissions execute the limits specified in Table 2.。
Table 2 hazardous waste incineration facility of pollutants in flue gas emissions limits。
The major forms of pollution are listed below along with the particular pollutants relevant to each of them:。
Air pollution, the release of chemicals and particulates into the atmosphere. Common gaseous air pollutants include carbon monoxide, sulfur dioxide, chlorofluorocarbons (CFCs) and nitrogen oxides produced by industry and motor vehicles. Photochemical ozone and smog are created as nitrogen oxides and hydrocarbons react to sunlight. Particulate matter, or fine dust is characterized by their micrometre size PM10 to PM2.5. 。
Water pollution, by the release of waste products and contaminants into surface runoff into river drainage systems, leaching into groundwater, liquid spills, wastewater discharges, eutrophication and littering. 。
Soil contamination occurs when chemicals are released by spill or underground leakage. Among the most significant soil contaminants are hydrocarbons, heavy metals, MTBE[7], herbicides, pesticides and chlorinated hydrocarbons. 。
Littering
Radioactive contamination, resulting from 20th century activities in atomic physics, such as nuclear power generation and nuclear weapons research, manufacture and deployment. (See alpha emitters and actinides in the environment.) 。
Noise pollution, which encompasses roadway noise, aircraft noise, industrial noise as well as high-intensity sonar. 。
Light pollution, includes light trespass, over-illumination and astronomical interference. 。
Visual pollution, which can refer to the presence of overhead power lines, motorway billboards, scarred landforms (as from strip mining), open storage of trash or municipal solid waste. 。
Thermal pollution, is a temperature change in natural water bodies caused by human influence, such as use of water as coolant in a power plant. 。
Air pollution comes from both natural and manmade sources. Though globally manmade pollutants from combustion, construction, mining, agriculture and warfare are increasingly significant in the air pollution equation.[8]。
Motor vehicle emissions are one of the leading causes of air pollution.[9][10][11] China, United States, Russia, Mexico, and Japan are the world leaders in air pollution emissions. Principal stationary pollution sources include chemical plants, coal-fired power plants, oil refineries,[12] petrochemical plants, nuclear waste disposal activity, incinerators, large livestock farms (dairy cows, pigs, poultry, etc.), PVC factories, metals production factories, plastics factories, and other heavy industry. Agricultural air pollution comes from contemporary practices which include clear felling and burning of natural vegetation as well as spraying of pesticides and herbicides[13]。
Some of the more common soil contaminants are chlorinated hydrocarbons (CFH), heavy metals (such as chromium, cadmium--found in rechargeable batteries, and lead--found in lead paint, aviation fuel and still in some countries, gasoline), MTBE, zinc, arsenic and benzene. In 2001 a series of press reports culminating in a book called Fateful Harvest unveiled a widespread practice of recycling industrial byproducts into fertilizer, resulting in the contamination of the soil with various metals. Ordinary municipal landfills are the source of many chemical substances entering the soil environment (and often groundwater), emanating from the wide variety of refuse accepted, especially substances illegally discarded there, or from pre-1970 landfills that may have been subject to little control in the U.S. or EU. There have also been some unusual releases of polychlorinated dibenzodioxins, commonly called dioxins for simplicity, such as TCDD.[14]。
Pollution can also be the consequence of a natural disaster. For example, hurricanes often involve water contamination from sewage, and petrochemical spills from ruptured boats or automobiles. Larger scale and environmental damage is not uncommon when coastal oil rigs or refineries are involved. Some sources of pollution, such as nuclear power plants or oil tankers, can produce widespread and potentially hazardous releases when accidents occur.。
In the case of noise pollution the dominant source class is the motor vehicle, producing about ninety percent of all unwanted noise worldwide.。