向量的基本运算公式是:
向量的加法OB+OA=OC。a+b=(x+x',y+y')。a+0=0+a=a。向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0。
个向量相乘公式:向量a•向量b =|向量a|*|向量b|*cos,设向量a=(x1,y1),向量b=(x2,y2),|向量a|=√(x1^2+y1^2),|向量b|=√(x2^2+y2^2)。
向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。
设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣�6�1∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)�6�1b=λ(a�6�1b)=(a�6�1λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a�6�1b。若a、b不共线,则a�6�1b=|a|�6�1|b|�6�1cos〈a,b〉;若a、b共线,则a�6�1b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a�6�1b=x�6�1x'+y�6�1y'。 向量的数量积的运算律 a�6�1b=b�6�1a(交换律); (λa)�6�1b=λ(a�6�1b)(关于数乘法的结合律); (a+b)�6�1c=a�6�1c+b�6�1c(分配律); 向量的数量积的性质 a�6�1a=|a|的平方。 a⊥b 〈=〉a�6�1b=0。 |a�6�1b|≤|a|�6�1|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a�6�1b)�6�1c≠a�6�1(b�6�1c);例如:(a�6�1b)^2≠a^2�6�1b^2。 2、向量的数量积不满足消去律,即:由 a�6�1b=a�6�1c (a≠0),推不出 b=c。 3、|a�6�1b|≠|a|�6�1|b| 4、由 |a|=|b| ,推不出 a=b或a=-b。 4、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|�6�1|b|�6�1sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。 向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ① 当且仅当a、b反向时,左边取等号; ② 当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ① 当且仅当a、b同向时,左边取等号; ② 当且仅当a、b反向时,右边取等号。 定比分点 定比分点公式(向量P1P=λ�6�1向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ�6�1向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 向量共线的重要条件 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy'-x'y=0。 零向量0平行于任何向量。 向量垂直的充要条件 a⊥b的充要条件是 a�6�1b=0。 a⊥b的充要条件是 xx'+yy'=0。 零向量0垂直于任何向量.。
向量是个非常好用的工具,说起来你要首先弄明白定义,最重的是向量的模,以及直角坐标系下的表示方法及运算。运算最重要的是点乘和叉乘。如果是高等数学还需要知道混合积。总之最先是各种数学定义,都得记清楚,向量运算不同于普通数加减。定义概念必须清楚。做起题来才的心应手。
其次最常用的是a点乘b=0,向量a,b相互垂直,a叉乘b=0,向量a,b相互平行,这俩你做向量题必用的。但是基本模式就是那么简单,记住关系,随时用就可以了。
在高等数学中,还有平面的法向两,直线的方向向量。等不知道用不用得到,如果不是高等数学,基本定义那些关系足够了。是高等数学的话,还需要记忆平面标准模式,几种表示方法,直线表示方法,与向量的关系。
基本上来讲,只要你别怕向量,多做多记基本概念,基本规定的运算。非常好用的工具,你感觉难是因为向量不同于以往的运算,是一种规定的全新运算,运算方法都与其他不同,需要记熟之后你会发祥真的非常好用。
我是上大学后,经常用向量,一定要学会,太方便了。
“平面向量”是高中数学知识体系的重要组成部分,高考题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,平面向量在培养学生良好学习素养、提升学习解题能力中发挥着重要作用。掌握灵活、多样、实用的解题方法和策略是学好平面向量知识的重要条件和基本要义。例举四个方法解决平面向量问题。
1 数形结合思想
由于向量具有“数”与“形”双重身份,利用数形结合思想,将问题内容通过图形形式进行有效展示,并抓住内在关联,进行求解,会使得问题得到事半功倍的效果。
3 坐标化思想
坐标是向量代数化的一种表达形式,可以利用向量的坐标进行向量的各种运算,也可以体现共线、垂直等特殊关系。所以向量坐标化是将几何图形问题代数化的过程。
大致分两类
1.不用建系 直接用端点字母表示向量,根据向量的点乘积 垂直的就是零 最后基本上抵消的差不多了。
这种多用于不方便建系(无明显垂直关系,或本身就是让你证明垂直的)的立体图形 。一般也就是用来证明垂直。
2.需要建立坐标系 首先选取合适的坐标系,这个很重要。
建系准确简便可以为以后的计算省时间。已知条件的点线面关系落在坐标轴或者坐标平面上最好,这样可以简化向量的表示。然后就是根据条件写出已知点的坐标,然后线面关系都可以去转化了。
另外
关于向量的两个重要概念:
法向量
和方向向量
其中法向量很重要
可以用它来证明很多问题
相信你们老师肯定在课上也讲过
设一个平面的法向量
然后用可以来计算线面距 ,夹角什么的~。
就先说这些吧~~
能想到的实在太多了~~
不过可能有点不系统~
毕竟高考过去很久了~~忘了很多~。
希望能对你有帮助~
呵呵~
原文地址:http://www.qianchusai.com/%E5%90%91%E9%87%8F%E8%A7%A3%E9%A2%98%E6%96%B9%E6%B3%95.html