没有问题,完全正确,几个基本概念和数字特征一定要明确!
利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY。
那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了。
如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。
但是,反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。
协方差Cov(X,Y)的度量单位是X的协方差乘以Y的协方差。而取决于协方差的相关性,是一个衡量线性独立的无量纲的数。
协方差为0的两个随机变量称为是不相关的。
扩展资料:
若两个随机变量X和Y相互独立,则E[(X-E(X))(Y-E(Y))]=0,因而若上述数学期望不为零,则X和Y必不是相互独立的,亦即它们之间存在着一定的关系。
协方差与方差之间有如下关系:
D(X+Y)=D(X)+D(Y)+2Cov(X,Y)。
D(X-Y)=D(X)+D(Y)-2Cov(X,Y)。
协方差与期望值有如下关系:
Cov(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)Cov(X,Y)=Cov(Y,X);
(2)Cov(aX,bY)=abCov(X,Y),(a,b是常数);
(3)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。
由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。
某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个。
则此城市中任一个家庭中孩子的数目是一个随机变量,记为X。它可取值0,1,2,3。
其中,X取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03。
则,它的数学期望 ,即此城市一个家庭平均有小孩1.11个,当然人不可能用1.11个来算,约等于2个。
设Y是随机变量X的函数: ( 是连续函数)
它的分布律为
若 绝对收敛,则有:
两个随机变量和的期望等于期望的和 正确。
乘积的期望等于期望的乘积 不正确 (当两个变量不相关时正确)
不相关。
不相关的等价条件:协方差为0/相关系数为0/期望之积等于积之期望。相互独立只是不相关的充分不必要条件。
f(x,y)=f(x)f(y)—X,Y独立。
E(XY)=E(X)E(Y)—X,Y不相关。
这里F(x,y)为(X,Y)的联合分布函数,F(x)为一维随机变量X的分布函数,F(y )为一维随机变量Y的分布函数。
概念
在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,就是说,关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。
以上内容参考:百度百科-随机变量。
可以的,因为独立的话可以分解开积分或者累加和,就能得到“乘积的期望等于期望的乘积”这一结论,与题设矛盾。