变限积分求导公式
积分上限函数求导,只要记住上述变限积分求导公式,简单的转换即可,积分上限函数求导即上述公式的下限为常数:d/dx∫(a,φ(x))f(t)dt=f[φ(x)]·φ'(x)-0=f[φ(x)]·φ'(x),如:
d/dx∫(a,sin(x))e^t·dt=e^sinx·sin'(x)=cos(x)·e^sinx。
f(x)=∫(a,x)xf(t)dt,此定理是变限积分的最重要的性质,掌握此定理需要注意两点:第一,下限为常数,上限为参变量x(不是含x的其他表达式);
第二,被积函数f(x)中只含积分变量t,不含参变量x。
积分变限函数是一类重要的函数,它最著名的应用是在牛顿一莱布尼兹公式的证明中.。
事实上,积分变限函数是产生新函数的重要工具,尤其是它能表示非初等函数,同时能将积分学问题转化为微分学问题。
积分变上限函数和积分变下限函数统称积分变限函数,一般进行计算求导的时候都转换为变上限积分求导。
总结:对于变限积分求导,通常将其转换为变上限积分求导,求导时,将上限的变量代入到被积函数中去,再对变量求导即可。
扩展资料
求导依据:
如果函数f(x)在区间[a,b]上连续,则积分变上限函数在[a,b]上具有导数:
1、下限为常数,上限为函数类型:
对于这种类型只需将上限函数带入到积分的原函数中去,再对上限函数进行求导。对下面的函数进行求导,只需将“X”替换为“t”再进求导即可。
2、下限为函数,上限为常数类型:
基本类型如下图,需要添加“负号”将下限的函数转换到上限,再按第一种类型进行求导即可。题例如下,添加“负号”转换为变上限积分函数求导即可。
3、上下限均为函数类型:
这种情况需要将其分为两个定积分来求导,因为原函数是连续可导的,所以首先通过“0”将区间[h(x),g(x)]分为[h(x),0]和[0,g(x)]两个区间来进行求导。然后将后面的变下限积分求导转换为变上限积分求导。
接着对两个区间的变上限积分分别求导即可得到下面公式。对于这种题,可以直接套公式,也可以自己推导。
答案选A
这样的题目,就是积分上限函数求导,只需将被积函数f(t)中的t换成上限的x即可。
如果上限仍是x的函数u=g(x),那把北积函数中的t换成g(x)后,还要乘以上限的导数g'(x)。
综上所述,本题就是
ln(x²+1)