triathlete [trai'æθli:t] n. 参加三项全能比赛的运动员。
网络释义21世纪大英汉词典-triathlete: 铁人三项选手 铁人三项选手。
[Game]Let's collect a... ... triathlon 铁人三项 triathlete 铁人三项选手 tube 内胎 ...。
基于1个网页 - 搜索相关网页 。
triathlete [trai'æθli:t] 。
n.【体育】三项全能运动员
例句与用法
hurdling['hə:dliŋ]n. 跨栏运动 。
boxing['bɔksiŋ]n.拳击 。
hula hooping['hu:lə hu:p]玩呼啦圈 。
pogo stick jumping['pəuɡəu stik 'dʒʌmpiŋ]弹簧单高跷游戏 。
jumping jack['dʒʌmpiŋ dʒæk]跳爆竹 。
somersaulting['sʌməsɔ:lt]n. 翻筋斗 lunge[lʌndʒ]n.&v.刺;跃进;前冲 。
Ashrita Furman[,ɑ:ʃ'ritə(r) fəmən]阿西里塔·弗曼 。
Guinness['ɡinis]吉尼斯(人名)
Guinness Book of World Records['ɡinis buk ɔv wə:ld ri'kɔ:dz]《吉尼斯世界纪录大全》 approximate[ə'prɔksəmeit]adj.近似的;大概的 。
approximately[ə'prɔksəmeitli]adv.远似地;大约地 。
conventional[kən'venʃənəl]adj.习俗的;传统的 。
laughter['lɑ:ftə]笑;笑声 。
reality[ri'æliti]n.真实;事实 。
in reality[ɪn rɪˈælɪtɪ]实际上;现实 。
adjustment[ə'dʒʌstmənt]n.调整;调节。
tough[tʌf]adj. 强硬的;困难的 。
extreme[ik'stri:m]adj.极端的;偏激的 。
vomit ['vɔmit ]呕吐n.呕吐;呕吐物 。
gymnastics[dʒim'næstiks]n.体操;体能训练 。
gymnastics[dʒim'næstiks]adv.体能训练方面 。
unfit[ʌn'fit]adj.不适宜的;不太健康的 。
fascinate['fæsineit]vt.使着迷;入迷 。
meditation[medi'teiʃən ]n,沉思;冥想 。
Sri Chinmoy[sri]斯里琴摩 。
spiritual['spɪrɪtʃʊəl]adj.精神上的 。
marathon['mærəθɔn]n.马拉松赛跑 。
urge[ə:dʒ]vt.催促;力劝 。
accomplish[ə'kʌmpliʃ]vt完成;实现 。
motivation[,məuti'veiʃən]n.动机 。
devotion[di'vəuʃən]n.热爱;投入 。
soul[səʊl]n.灵魂;心灵;精神 。
sacred['seikrid]adj.宗教的;庄严的;神圣的 。
deed[di:d]n.行为;功绩 。
conception[kən'sepʃən]n.主意;计划 。
tact[tækt]n.机敏;乖巧;老练;技巧 。
regret[ri'ɡret]Vt&vi.后悔;感到抱歉 。
repentance[ri'pentəns]n. 后悔 。
wisdom['wɪzdəm]n.智慧 。
virtue['vɜ:tju:]n.美德 。
noble['nəʊbl]adj.高尚的;贵族的 。
doom[du:m]vt注定;判决 。
bid[bid]Vt.&vi出价;投标 。
juggle['dʒʌɡl]Vt&Vi.耍把戏;玩杂耍 。
triathlon[trai'æθlɔn]n. 三项全能运动 。
triathlete[trai'æθli:t]n. 三项全能运动员 。
是这个么
教材版本不一样
1.triathlete(三项全能选手)、terminater(终结者)……实在不知道它要说什么,又不是champion、winner或者conqueror~。
2.dogfall(平局)
1bid
2triathlete triathlon。
3champion
4hence
5full fully
6economics economic economical。
7achieve achievement。
8courageous courage。
9appreciate appreciation。
英文的题目:1.A bakery owner turns on his doughnut machine at . At the machine has completed one third of the day's job. At what time will the doughnut machine complete the job? 2.A square is drawn inside a rectangle. The ratio of the width of the rectangle to a side of the square is . The ratio of the rectangle's length to its width is . What percent of the rectangle's area is inside the square? 3.For the positive integer , let denote the sum of all the positive divisors of with the exception of itself. For example, and . What is ? 4.Suppose that of bananas are worth as much as oranges. How many oranges are worth as much as of bananas? 5.Which of the following is equal to the product 6.A triathlete competes in a triathlon in which the swimming, biking, and running segments are all of the same length. The triathlete swims at a rate of 3 kilometers per hour, bikes at a rate of 20 kilometers per hour, and runs at a rate of 10 kilometers per hour. Which of the following is closest to the triathlete's average speed, in kilometers per hour, for the entire race? 7.The fraction simplifies to which of the following? 8.Heather compares the price of a new computer at two different stores. Store offers off the sticker price followed by a rebate, and store offers off the same sticker price with no rebate. Heather saves by buying the computer at store instead of store . What is the sticker price of the computer, in dollars? 9.Suppose that is an integer. Which of the following statements must be true about ? 10.Each of the sides of a square with area is bisected, and a smaller square is constructed using the bisection points as vertices. The same process is carried out on to construct an even smaller square . What is the area of ? 11.While Steve and LeRoy are fishing 1 mile from shore, their boat springs a leak, and water comes in at a constant rate of 10 gallons per minute. The boat will sink if it takes in more than 30 gallons of water. Steve starts rowing toward the shore at a constant rate of 4 miles per hour while LeRoy bails water out of the boat. What is the slowest rate, in gallons per minute, at which LeRoy can bail if they are to reach the shore without sinking? 12.In a collection of red, blue, and green marbles, there are more red marbles than blue marbles, and there are more green marbles than red marbles. Suppose that there are red marbles. What is the total number of marbles in the collection? 13.Doug can paint a room in hours. Dave can paint the same room in hours. Doug and Dave paint the room together and take a one-hour break for lunch. Let be the total time, in hours, required for them to complete the job working together, including lunch. Which of the following equations is satisfied by ? 14.Older television screens have an aspect ratio of . That is, the ratio of the width to the height is . The aspect ratio of many movies is not , so they are sometimes shown on a television screen by "letterboxing" - darkening strips of equal height at the top and bottom of the screen, as shown. Suppose a movie has an aspect ratio of and is shown on an older television screen with a -inch diagonal. What is the height, in inches, of each darkened strip? 15.Yesterday Han drove 1 hour longer than Ian at an average speed 5 miles per hour faster than Ian. Jan drove 2 hours longer than Ian at an average speed 10 miles per hour faster than Ian. Han drove 70 miles more than Ian. How many more miles did Jan drive than Ian? 16.Points and lie on a circle centered at , and . A second circle is internally tangent to the first and tangent to both and . What is the ratio of the area of the smaller circle to that of the larger circle? 17.An equilateral triangle has side length 6. What is the area of the region containing all points that are outside the triangle but not more than 3 units from a point of the triangle? 18.A right triangle has perimeter 32 and area 20. What is the length of its hypotenuse? 19.Rectangle lies in a plane with and . The rectangle is rotated clockwise about , then rotated clockwise about the point moved to after the first rotation. What is the length of the path traveled by point ? 20.Trapezoid has bases and and diagonals intersecting at . Suppose that , , and the area of is . What is the area of trapezoid ? 21.A cube with side length is sliced by a plane that passes through two diagonally opposite vertices and and the midpoints and of two opposite edges not containing or , as shown. What is the area of quadrilateral ? 22.Jacob uses the following procedure to write down a sequence of numbers. First he chooses the first term to be 6. To generate each succeeding term, he flips a fair coin. If it comes up heads, he doubles the previous term and subtracts 1. If it comes up tails, he takes half of the previous term and subtracts 1. What is the probability that the fourth term in Jacob's sequence is an integer? 23.Two subsets of the set are to be chosen so that their union is and their intersection contains exactly two elements. In how many ways can this be done, assuming that the order in which the subsets are chosen does not matter? 24.Let . What is the units digit of ? 25.A round table has radius . Six rectangular place mats are placed on the table. Each place mat has width and length as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length . Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is ? Problem12345678910111213AnswerDAACBDEABEDCDProblem141516171819202122232425 AnswerDDBBBCDADBDC 你看,这才是一份……你能不能给我一个提供题目的方式。