helium-100

问题描述:氦三是什么 大家好,给大家分享一下helium100是什么意思,很多人还不知道这一点。下面详细解释一下。现在让我们来看看!

Helium 10是什么啊?

helium-100的相关图片

从20世纪90年代开始,包括中国、以色列、日本、印度等国家在内,人类掀起了新一轮的探月高潮,在这次探月高潮中,有一种神秘的元素成为世人共同的目标,它就是——氦-3。

氦-3是氦的同位素,含有两个质子和一个中子。氦-3原本大量存在于太阳喷射出来的高能粒子流——太阳风中。在几乎没有大气的月球上,太阳风直接落到月球表面,日积月累,在月面的沙粒、岩石中,氦-3的含量越积越多,成了月壤重要的组成部分。

氦-3最吸引人类的就是它作为能源材料的优秀“潜质”。氘和氦-3可以进行核聚变,这种聚变不产生中子,所以放射性小,而且反应过程易于控制,可算是既无污染又安全。氦-3不仅可用于地面核电站,而且特别适合作为火箭和飞船的燃料,用于宇宙航行。从月球土壤中每提取一吨氦-3,可得到6300吨氢、70吨氮和1600吨碳。

据专家计算,如果采用氦-3核聚变发电,美国年发电总量仅需消耗25吨氦-3;中国1992年的年发电总量只需8吨氦-3,全世界一年有100吨氦-3就够了。以目前全球电价和空间运输成本算,1吨氦-3的价值约40亿美元,而且随着空间技术发展,空间运输成本肯定将大大下降。最近法国科学家宣布,2030年,利用氦-3进行核聚变发电将实现商业化。据估算,月球上有300万到500万吨的氦-3储量,能够支持地球7000年的电量!

另外氦-3在军事、医学等方面也有广大的神通,难怪1克氦-3要比1克黄金贵重三十几倍呢!

关于氦,海的资料的相关图片

关于氦,海的资料

helium这个字,意思是氦气。

氦气,英文名为Helium,符号为He,无色无味,不可燃气体,空气中的含量约为百万分之5.2。化学性质不活泼,通常状态下不与其它元素或化合物结合。1908年7月10日,荷兰物理学家昂尼斯首次液化了氦气。

在1868年,法国天文学家简森(Janssen P J C,1824-1907)在观察日全食时,就曾在太阳光谱上观察到一条黄线D,这和早已知道的钠光谱的D1和D2两条线不相同。同时,英国天文学家洛克耶尔(Lockyer J N,1836-1920)也观测到这条黄线D。当时天文学家认为这条线只有太阳才有,并且还认为是一种金属元素。所以洛克耶尔把这种元素取名为helium,这是由两个字拼起来的,字根helio源于希腊文?λιο?,是太阳神的意思,后缀-ium是指金属元素而言,也就是“氦”(氦以单质形式出现时,叫做“氦气”)。

1895年,莱姆赛和另一位英国化学家特拉弗斯(Travers M W,1872-1961)合作,在用硫酸处理沥青铀矿时,产生一种不活泼的气体,用光谱鉴定为氦气,证实了氦气也是一种稀有气体,这种气体地球上也有,并且氦元素既不是金属元素,也不是非金属元素,而是一种稀有气体元素,

在室温和大气压力下,氦是无色、无味的气体。它在空气中的体积含量为5.24×10-6。是人类发现临界温度最低的物质。进行低压放电时显深黄色。

因为氦气传播声音的速度差不多为空气的三倍,所以吸入氦气的人说话的声音会变高频率。这个有趣的现像,使得吸入氦气的人说话尖声细气,就好像旧时的卡通人物一样。

氦气分子是单原子分子,化学性质不活泼。氦气一般不生成化合物,在低压放电管中受激发可形成氦离子、氢化氦等离子及分子。氦离子也叫做α粒子。

由于氦气密度远小于空气(空气的密度为1.29kg/m3,氦气的密度为0.1786kg/m3),而且化学性质极不活泼,较氢气安全(氢气可以在空气中燃烧,可能会引起爆炸),氦气常用于飞船或广告气球中的充入气体。

利用氦气不活泼的化学性质,氦气常用于镁、锆、铝、钛等金属焊接的保护气。

元音字母e在重读开音节里念长元音/i/的音,发音时,舌端靠近下齿,舌前部抬得很高,但不接触上颚,不发生任何摩擦,牙床接近合,唇形扁平,出现在字首、字中或字尾位置,如:

he 他

we 我们

me 我

be 是

even 甚至

meter 米

fever 发烧

zebra 斑马

希望我能帮助你解疑释惑。

氦的化学性质与物理性质的相关图片

氦的化学性质与物理性质

氦气

氦在空气中的体积分数约为0.00052%,即每1 000 L空气中含氦5 mL。有的地区的天然气中含氦量高达8%,我国于1960年建成从天然气制取氦的工厂。氦广泛存在于宇宙空间。太阳上有大量的氦,约占太阳总质量的1/4,为500亿亿亿吨左右。

氦是最难液化的一种“永久气体”,直到1908年,荷兰科学家昂纳斯才首次成功地使氦液化。液氦有许多奇特的现象。

液氦可以产生奇特的膜移动现象。我们知道水是不能沿玻璃上升的。可是,把一只空烧杯部分地浸入2.17K以下的液氦中,在烧杯内外表面会全部覆上一层很薄的液氦膜,这层液膜能“爬”上烧杯壁向烧杯内移动,直到烧杯内外液面高度相平为止,如果随后把烧杯提起来,液氦则由烧杯内向烧杯外移动,当烧杯完全脱离液面时,则看到有液氦从烧杯外壁滴下,液膜移动的速度可达30 cm/s左右,并跟液面差、移动路程的长度以及烧杯壁的高度无关。液氦这种液膜移动的奇特现象如何解释,目前还是一个谜。

氦是已知所有物质中沸点最低的,沸点是4.2 K。利用液氦可获得接近绝对零度的低温。方法是把一种“顺磁物质”放在液氦上面,几乎和液态氦相接触。两者间用氦气隔开,同时把整个系统的温度降到1K左右,然后把这个系统放在一个磁场里。这时,顺磁物质的分子就会平行于磁场的磁力线,整齐地排列起来,同时放出一些热。放出的热会由周围的氦轻度蒸发而消耗掉。接着,撤去磁场,顺磁物质的分子立即从有序变成无序排列。分子从有序变无序要吸热,热只能来自液氦,使液氦温度降低。这个步骤可以一次一次地重复进行,每重复一次,液氦温度就下降一次。后来美国化学家吉奥克又对这种方法作了改进,借助此法,于1957年获得0.00002K的低温,目前已获得0.000001 K的低温。在已知的所有物质中,只有氦在非常接近绝对零度时不会凝成固体。在低于1K时,施加25×1.01×105Pa压强,才能使液氦凝成固体。

氦气混在塑料、人造丝、合成纤维中,可制成非常轻盈的泡沫塑料、泡沫纤维,用于防震、保温、包装的新材料。

测算结果表明氦能参与化合反应

美国IBM公司研究中心的科学家通过精密的量子力学计算,得出稀有气体中惰性最大的氦,可能与氧化铍反应,生成一种稳定的化合物的结论。他们指出,氧化铍分子中的电子主要位于氧原子上,而使铍原子带正电荷。如果一个氦原子从背后接近氧化铍分子,那么就有足够强的正电荷吸引氦的两个电子,使之与铍共享。氦与铍形成给电子共价键,其产物是一种线型三原子分子—HeBeO。计算结果表明,这种分子一经形成,它必将稳定,尤其是在低温条件下。

日本名古屋大学地球物理学家发现,太阳和月亮的潮汐效应所引起的裂缝中压强的增加,可引起逸出气体中氦对氩比率出现周期性的可测定的变化。由潮汐效应引起的地球地壳的应变比地震引起的小100倍,因此他们认为,这种氦对氩比率可用作地壳的“应变计”,如果连续观测可能地震区逸出气体的比率变化,有可能预测地震。

选自《百科知识》

1.物质的理化常数:

国标编号 22007

CAS号 7440-59-7 。

中文名称 氦

英文名称 helium

别 名

分子式 He 外观与性状 无色无臭的惰性气体 。

分子量 4.00 蒸汽压 202.64kPa(-268.9℃) 。

熔 点 -272.1℃ 沸点:-268.9℃ 溶解性 不溶于水、乙醇 。

密 度 相对密度(水=1)0.15(-271℃);相对密度(空气=1)0.14 稳定性 稳定 。

危险标记 5(不燃气体) 主要用途 用于气球、温度计、电子管、潜水服等的充气 。

2.对环境的影响:

一、健康危害

侵入途径:吸入。

健康危害:本品为惰性气体,高浓度时可使氧分压降低而有窒息危险。当空气中氦浓度增高时,患者先出现呼吸加快、注意力不集中、共济失调;继之出现疲倦无力、烦躁不安、恶心、呕吐、昏迷、抽搐,以致死亡。

二、毒理学资料及环境行为

危险特性:若遇高热,容器内压增大,有开裂和爆炸的危险。

3.现场应急监测方法:

4.实验室监测方法:

气相色谱法,参照《分析化学手册》(第四分册,色谱分析),化学工业出版社。

5.环境标准:

美国 车间卫生标准 窒息性气体。

6.应急处理处置方法:

一、泄漏应急处理

迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散。如有可能,即时使用。漏气容器要妥善处理,修复、检验后再用。

二、防护措施

呼吸系统防护:一般不需特殊防护。当作业场所空气中氧气浓度低于18%时,必须佩戴空气呼吸器、氧气呼吸器或长管面具。

眼睛防护:一般不需特殊防护。

身体防护:穿一般作业工作服。

手防护:戴一般作业防护手套。

其它:避免高浓度吸入。进入罐、限制性空间或其它高浓度区作业,须有人监护。

三、急救措施

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸停止,立即进行人工呼吸。就医。

灭火方法:本品不燃。切断气源。喷水冷却容器,可能的话将容器从火场移至空旷处。

还有更多的~~~你去这里参考一下~。

http://zh.wikipedia.org/wiki/%E6%B0%A6。

不过上面这个网站打开速度有点慢~~你要有耐心啊~。

加油~!

氦有几种表示方法?的相关图片

氦有几种表示方法?

0族元素

2 10 18 36 54 86。

氦 氖 氩 氪 氙 氡

0族元素由于已经稳定,最外层电子数为8(氦为2),故常以单质气体存在。化学性质极不活泼,除如XeF2等极少数化合物外几乎不与其他物质在任何情况发生化学反应。其中氦、氖没有化合物。

[编辑本段]

各元素概述

元素序号:2

元素符号:He

元素名称:氦

元素原子量:4.003

元素类型:非金属

发现人:杨森

发现年代:1868年

发现过程: 1868年,法国的杨森,最初从日冕光谱内发现太阳中有新元素,即氦。

元素描述: 是惰性元素之一。其单质氦气,分子式为 He,是一种稀有气体,无色、无臭、无味。它在水中的溶解度是已知气体中最小的,也是除氢气以外密度最小的气体。密度0.17847克/升,熔点 -272.2℃(26个大气压)。沸点-268.9℃。它是最难液化的一种气体,其临界温度为-267.9℃。临界压力为2.25大气压。当液化后温度降到-270.98℃以下时,具有表面张力很小,导热性很强,粘性很强的特性。液体氦可以用来得到接近绝对零度(-273.15℃)的低温。化学性质十分不活泼,既不能燃烧,也不能助燃。

元素来源: 氦是放射性元素分裂的产物,α质点就是氦的原子核。在工业中可由还氦达7%的天然气中提取。也可由液态空气中用分馏法从氦氖混合气体中制得。

元素用途: 用它填充电子管、气球、温度计和潜水服等。也用于原子核反应堆和加速器、冶炼、和焊接时的保护气体。

元素辅助资料: 1868年8月18日,法国天文学家詹森赴印度观察日全食,利用分光镜观察日珥,从黑色月盘背面如出的红色火焰,看见有彩色的彩条,是太阳喷射出来的帜热其他的光谱。他发现一条黄色谱线,接近钠光谱总的D1和D2线,日食后,他同样在太阳光谱中观察到这条黄线,称为D3线。1868年10月20日,英国天文学家洛克耶也发现了这样的一条黄线。

经过进一步研究,认识到是一条不属于任何已知元素的新线,是因一种新的元素产生的,把这个新元素命名为 helium,来自希腊文helios(太阳),元素符号定为He。这是第一个在地球以外,在宇宙中发现的元素。为了纪念这件事,当时铸造一块金质纪念牌,一面雕刻着驾着四匹马战车的传说中的太阳神阿波罗(Apollo)像,另一面雕刻着詹森和洛克耶的头像,下面写着:1868年8月18日太阳突出物分析。

过了20多年后,莱姆塞在研究钇铀矿时发现了一种神秘的气体。由于他研究了这种气体的光谱,发现可能是詹森和洛克耶发现的那条黄线D3线。但由于他没有仪器测定谱线在光谱中的位置,他只有求助于当时最优秀的光谱学家之一的伦敦物理学家克鲁克斯。克鲁克斯证明了,这种气体就是氦。这样氦在地球上也被发现了。

元素序号:10

元素符号:Ne

元素名称:氖

元素原子量:20.18

元素类型:非金属

发现人:莱姆塞、特拉威斯

发现年代:1898年

发现过程: 1898年,英国的莱姆塞、特拉威斯蒸发液体氢时,在最先溢出的气体光谱中发现了氖。

元素描述: 稀有气体元素之一,无色,无臭,无味,气体密度0.9092克/升,液体密度 1.204克/厘米3,熔点-248.67℃,沸点-245.9℃,化学性质极不活泼,电离能21.564电子伏特,不能燃烧,也不助燃,在一般情况下部生成化合物,气态氖为单原子分子,氖还有一个特殊性质是气体与液体体积之比,大多数深冷液态气体在室温条件下产生500到800体积的气体,而氖则生成大于1400体积的气体。这就为它的贮藏和运输带来方便。100升空气中含氖约1.818毫升。

元素来源: 由空气分离塔在制取氧氮气的同时,从中可以提取氖氦的混合气体,在经液氢冷凝法或活性炭硅胶的吸附作用,便可得到氖。

元素用途: 大量用于高能物理研究,让氖充满火花室来探测和微粒的行径。也是制造霓虹灯和指示灯的好原料,和氩混合使用会有美丽的蓝光产生,也可用来填充水银灯和钠蒸气灯。液体氖还用来做制冷剂。

元素辅助资料:莱姆塞在发现氩和氦后,研究了它们的性质,测定了它们的原子量。接着他考虑它们在元素周期表中的位置。因为,氦和氩的性质与已发现的其他元素都不相似,所以他提议在化学元素周期表中列入一族新的化学元素,暂时让氦和氩作为这一族的成员。他还根据门捷列夫提出的关于元素周期分类的假说,推测出该族还应该有一个原子量为20的元素。

在1896~1897年间,莱姆塞在特拉威斯的协助下,试图用找到氦的同样方法,加热稀有金属矿物来获得他预言的元素。他们试验了大量矿石,但都没有找到。最后他们想到了,从空气中分离出这种气体。但要将空气中的氩除去是很困难的,化学方法基本无法使用。只有把空气先变成液体状态,然后利用组成它成分的沸点不同,让它们先后变成气体,一个一个地分离出来。把空气变成液体,需要较大的压力和很低的温度。而正是在19世纪末,德国人林德和英国人汉普森同时创造了致冷机,获得了液态空气。1898年5月24日莱姆塞获得汉普森送来的少量液态空气。莱姆塞和特拉威斯从液态空气中首先分离出了氪。接着他们又对分离出来的氩气进行了反复液化、挥发,收集其中易挥发的组分。1898年6月12日他们终于找到了氖(neon),元素符号Ne,来自希腊文neos(新的)。

元素序号:18

元素符号:Ar

元素名称:氩

元素原子量:39.95

元素类型:非金属

发现人:瑞利

发现年代:1894年

发现过程: 1894年,英国的瑞利,从空气中除去氧、氮后,在对少量气体做光谱分析时发现氩。

元素描述: 其单质为无色、无臭和无味的气体。是稀有气体中在空气中含量最多的一个,100升空气中约含有934毫升。密度1.784克/升。熔点-189.2℃。沸点-185.7度。电离能为15.759电子伏特。化学性极不活泼,按化合物这个词的一般意义来说,它是不会形成任何化合物的。氩不能燃烧,也不能助燃。

元素来源: 可从空气分馏塔抽出含氩的馏分经氩塔制成粗氩,再经过化学反应和物理吸附方法分出纯氩。

元素用途: 氩的最早用途是向电灯泡内充气。焊接和切割金属也使用大量的氩。用作电弧焊接不锈钢、镁、铝和其他合金的保护气体。

元素辅助资料: 19世纪末期,英国物理学家瑞利勋爵发现利用空气除杂制得的氮气和从氨制得的氮气的密度有大约是千分之一的差别。他在当时很有名望的英国《自然》杂志上发表了他的发现,并请大家帮他分析其中的原因。伦敦大学化学教授莱姆塞推断空气中的氮气里可能含有一种较重的未知气体。他们两人又各自做了大量的实验,终于发现了在空气中还存在一种密度几乎是氮气密度一倍半的未知气体。

1894年8月13日,英国科学协会在牛津开会,瑞利作报告,根据马丹主席的建议,把新的气体叫做argon(希腊文意思就是“不工作”、“懒惰”)。元素符号Ar。

当然,当时发现的氩,实际上是氩和其他惰性气体的混合气体,正是因为氩在空气中存在的惰性气体的含量占绝对优势,所以它作为惰性气体的代表被发现。

氩的发现是从千分之一微小的差别开始的,是从小数点右边第三位数字的差别引起的,不少化学元素的发现,许多科学技术的发明创造,都是从这种微小的差别开始的。

元素序号:36

元素符号:Kr

元素名称:氪

元素原子量:83.80

元素类型:非金属

发现人:莱姆塞、特拉威斯

发现年代:1898年

发现过程: 1898年,英国的莱姆塞和特拉威斯用光谱分析液态空气蒸发后所剩下的残余气体时,发现了氪。

元素描述: 无色、无嗅、无味。密度3.736克/升(气),2.155克/厘米 3(液,-156.9℃)。熔点-156.6℃,沸点-152.30±0.10℃。第一电离能13.999电子伏特。氪原子的外壳是电子已填满了的稳定结构。所以它的化学性质极不活泼,不能燃烧,也不能助燃。具有能吸收X射线的性能。

元素来源: 100升空气中约含氪0.114毫升,可从大型的空气液化分离塔内,在制氧或氮的同时抽出的馏分中分出制得。

元素用途: 主要用来充填电灯和各种电子器件。也可作X射线工作时的遮光材料。它和氩的混合物广泛用于充填萤光灯。

元素辅助资料:莱姆塞在发现氩和氦后,研究了它们的性质,测定了它们的原子量。接着他考虑它们在元素周期表中的位置。因为,氦和氩的性质与已发现的其他元素都不相似,所以他提议在化学元素周期表中列入一族新的化学元素,暂时让氦和氩作为这一族的成员。他还根据门捷列夫提出的关于元素周期分类的假说,推测出该族还应该有原子量为20、82、129的元素。

在1896~1897年间,莱姆塞在特拉威斯的协助下,试图用找到氦的同样方法,加热稀有金属矿物来获得他预言的元素。他们试验了大量矿石,但都没有找到。最后他们想到了,从空气中分离出这种气体。但要将空气中的氩除去是很困难的,化学方法基本无法使用。只有把空气先变成液体状态,然后利用组成它成分的沸点不同,让它们先后变成气体,一个一个地分离出来。把空气变成液体,需要较大的压力和很低的温度。而正是在19世纪末,德国人林德和英国人汉普森同时创造了致冷机,获得了液态空气。1898年5月24日莱姆塞获得汉普森送来的少量液态空气。莱姆塞和特拉威斯从液态空气中成功分离出了一种新气体。莱姆塞决定把它叫做krypton(Kr),来自希腊文krptos(隐藏)。

元素序号:54

元素符号:Xe

元素名称:氙

元素原子量:131.3

元素类型:非金属

发现人:莱姆塞、特拉威斯

发现年代:1898年

发现过程: 1898年,英国的莱姆塞和特拉威斯,在分馏液态氪时发现了氙。

元素描述: 无色、无嗅、无味。是惰性气体的一种。密度5.887±0.009克/ 升,3.52克/厘米3(液),2.7克/厘米3(固)。熔点-111.9℃,沸点-107.1±3℃。电离能12.130电子伏特。是非放射性惰性气体中唯一能形成在室温下稳定的化合物的元素,能吸收X射线。在较高温度或光照射下可与氟形成一系列氟化物如XeF2、XeF4及XeF6等。氙也能与水、氢醌和苯酚一类物质形成弱键包合物。

元素来源: 从大型的空气液化分离塔内,在制氧或氮的同时抽出的馏分中分出。

元素用途: 由于它具有极高的发光强度,在照明技术上用来充填光电管、闪光灯合氙气高压灯。氙气高压灯具有高度的紫外光辐射,可用于医疗技术方面。

元素辅助资料:莱姆塞在发现氩和氦后,研究了它们的性质,测定了它们的原子量。接着他考虑它们在元素周期表中的位置。因为,氦和氩的性质与已发现的其他元素都不相似,所以他提议在化学元素周期表中列入一族新的化学元素,暂时让氦和氩作为这一族的成员。他还根据门捷列夫提出的关于元素周期分类的假说,推测出该族还应该有原子量为20、82、129的元素。

1898年,莱姆塞在特拉威斯的协助下先后发现了氪、氖。后来,由于获得新式空气液化设备的帮助,他们制备了大量的氪和氖,反复几次液化、挥发,在同年7月12日从其中又分离出一种惰性气体氙xenon(Xe),来自希腊文xenos(奇异的)。

元素序号:86

元素符号:Rn

元素名称:氡

元素原子量:[222]

元素类型:非金属

发现人:多恩(F.E.Dorn)

发现年代:1900年

发现过程: 1900年由德国人多恩(F.E.Dorn)在铀制品中发现。

元素描述: 第一电离能10.748电子伏特。无色气体。密度9.73克/升。熔点-71℃,沸点-61.8℃。易被吸附在活性碳、硅胶和其他吸附剂上,从而可从气体杂质中分离出来;加热到约350℃,又可从活性碳上脱附。溶于水。

元素来源: 由镭、钍等放射性元素蜕变而获得。

元素用途: 由于氡具有放射性,衰变后成为放射性钋和α粒子,因此可供医疗用。用于癌症的放射治疗;用充满氡气的金针插进生病的组织,可杀死癌细胞。

元素辅助资料: 物理学和化学家们在研究物质的放射性时发现,放射物质周围的空气也会变得具有放射性。

19世纪末,科学家们发现了钍不断放出一种气态的放射性物质,并确定它是化学惰性的,并且具有较高的原子量。由于来自于钍,就称它为钍射气,符号为ThEm。1918年德国化学家施密特按惰性气体氩、氖等命名方式,称它为thoron,元素符号定为Tn,正式承认它是一种元素。1900年德国物理学家多恩同样发现了镭射气radium emantion,符号为RaEM。1918年,施密特又把它改称radon,元素符号定为Rn。另外在1903年,还发现一种锕射气actinium emantion, AcEm;以及一种惰性气体niton。后来人们发现钍射气是氡220,锕射气是氡219,niton是氡222。

氡是地壳中放射性铀、镭和钍的蜕变产物,是一种惰性气体,因此地壳中含有放射性元素的岩石总是不断的向四周扩散氡气,使空气中和地下水中多多少少含有一些氡气。强烈地震前,地应力活动加强,氡气不仅运移增强,含量也会发生异常变化,如果地下含水层的地应力作用下发生形变,就会加速地下水的运动,增强氡气的扩散作用,引起氡气含量的增加,所以测定地下水中氡气的含量增加可以作为一种地震前兆。

由于氡是一种放射性元素,如果长期呼吸高浓度氡气,将会造成上呼吸道和肺伤害,甚至引发肺癌。氡为19种致癌物质之一。

氧族元素

氧族元素是元素周期表上的ⅥA族元素(IUPAC新规定:16族)。

这一族包含氧(O)、硫(S)、硒(Se)、碲(Te)、钋(Po)五种元素,其中钋为金属,碲为准金属,氧、硫、硒是典型的非金属元素。在标准状况下,除氧单质为气体外,其他元素的单质均为固体。

在和金属元素化合时,氧、硫、硒、碲四种元素通常显-2氧化态;但当硫、硒、碲处于它们的酸根中时,最高氧化态可达+6。

一些过渡金属常以硫化物矿的形式存在于地壳中,如FeS2、ZnS等。氧、硫、硒的单质可以直接与氢气化合,生成氢化物.例如,硫与氢气反应时,生成硫化氢.。

一.原子结构的异同点

1.原子结构的相同点.(1)原子最外层有6个电子.。

(2)反应中易得到2个电子.。

(3)表现氧化性.

2.原子结构的不同点.

(1)核电荷数依次增大.

(2)电子层数依次增大.

(3)原子半径依次增大,得电子能力依次减弱,氧化性依次减弱.。

二.单质的化学性质

1.相似性

(1)能与大多数金属反应.。

(2)均能与氢化合生成气态氢化物.。

(3)均能在氧气中燃烧.

(4)氧化物对应的水化物为酸.。

(5)都具有非金属性.

2.递变性(从氧-->碲)。

(1)气态氢化物的稳定性逐渐减弱.。

(2)气态氢化物的还原性逐渐增强.。

(3)气态氢化物水溶液的酸性逐渐增强.。

(4)最高价氧化物对应水化物酸性逐渐减弱.。

(5)非金属性逐渐减弱.

氧(O) 硫(S) 硒(Se) 碲(Te)

核电荷数 8 16 34 52。

常温色态 无色气体 淡黄固体 灰色固体 银白固体。

熔、沸点 → 依次升高

化合价 -2 -2、+4、+6 -2、+4、+6 -2、+4、+6。

与H2反应 爆炸 加热 加热 ╱。

H2R稳定性 1000℃ 300℃ 加热易分解 极易分解。

最高价水化物 ╱ H2SO4 H2SeO4 H2TeO4。

碳族元素

位于元素周期表中ⅣA族,包括碳C、硅Si、锗Ge、锡Sn、铅Pb五种元素。价电子层构型为ns2np2,有4个价电子。碳、硅是非金属,锡、铅是金属,锗是半金属。特殊的结构使其获得电子与失去电子的能力几乎相等,往往通过电子的共用达到稳定结构,当与其它元素的原子化合时,主要形成共价型化合物。

碳和硅在自然界中分布很广,碳的含量并不多,但它是地上化合物种类最多的元素。硅在地壳中的含量仅次于氧。

游离态的碳以金刚石和石墨两种单质形式存在,硅以化合态存在于二氧化硅和硅酸盐中,锗、锡主要以氧化物形式存在(锗石GeO2、锡石SnO2)、铅以硫化物存在居多。铅单质为金属晶体,其它四种元素的单质为原子晶体(石墨为层状晶体、白锡为金属晶体)。空气中的二氧化碳、地壳中各种碳酸盐、煤、石油里都含有大量的碳,脂肪、糖类、蛋白质及其它有机物都是含碳的化合物。碳和锡都有同素异形体(金刚石、石墨和碳-60,灰锡和白锡等)。

本族元素随着原子序数的增加,电子层数逐渐增加,原子核对外层电子的引力逐渐减弱,非金属性逐渐减弱(得电子能力减弱),金属性逐渐增强(失电子能力增强)。化学性质差异很大。

1.碳可以跟浓硫酸、硝酸反应,被氧化成二氧化碳,不与盐酸作用。硅不跟盐酸、硫酸、硝酸作用,只与氢氟酸反应。锗不和稀盐酸、稀硫酸反应,但能被浓H2SO4、浓HNO3氧化。锡和稀盐酸、稀H2SO4反应,生成低价锡Sn(Ⅱ)的化合物;跟浓H2SO4、浓HNO3反应生成高价锡Sn(Ⅳ)的化合物。铅跟盐酸、硫酸、硝酸都能反应被氧化成Pb2+。

2. 跟碱溶液反应的有硅和锡,如生成SiO3,2-,放出氢气,表明锡不全是金属性的。

3.在加热时都能跟氧反应,被氧化成CO2、SiO2和PbO等。

4.跟硫、氯共热生成相应的高价氯化物和硫化物,铅则生成PbS和PbCl2。

5.碳、硅跟金属共热生成碳化物和硅化物,锡、铅与金属形成合金。都不能直接与氢化合,其氢化物是间接制得的。

铂族元素

| [<<] [>>]。

矿物分类中,铂族元素矿物属自然铂亚族,包括铱、铑、钯和铂4种自然元素矿物。它们彼此之间广泛存在类质同象置换现象,从而形成一系列类质同象混合晶体。同时,其成分中常有铁、铜、镍、银等类质同象混入物,当它们的含量较高时,便构成相应的殓种。铂族元素旷物均为等轴晶系,单晶体极少见,偶而呈立方体或八面体的细小晶粒产出。一般呈不规则粒状、树枝状、葡萄状或块状形态。颜色和条痕为银白色至钢灰色,金属光泽,不透明,无解理,锯齿状断口,具延展性,为电和热的良导体。由铂族元素矿物熔炼的金属有钯金、铱金、铂金、铑金、等。

1.钯金:主要由自然钯熔炼而成。颜色银白色,外观与铂金相似,金属光泽。 硬度4~4.5。相对密度12。熔点为1555℃。化学性质较稳定。因产量比铂金和黄金大,故价值低,很少用来制作首饰。

2.铑金:主要由自然铑提炼而成,是一种稀少的贵金属。颜色为银白色, 金属光泽,不透明。硬4~4.5,相对密度12.5。熔点高,为1955℃。化学性赏稳定。由於铑金耐腐蚀,而且光泽好,因此主要用於电镀业,将其电镀在其它金属表面,镀层色泽坚固,不易磨损,反光效果好。

3.铱金:主要由自然铱或铱矿提炼而成。颜色为银白色,具强金属光泽,硬度7 。相对密度22.40 ,性脆但在高温下可压成箔片或拉成细丝,熔点高,达2454℃。化学性质非常稳定。主要用於制造科学仪器、热电偶、电阻绫等。高硬度的铁铱和铱铂合金,常用来制造笔尖和铂金首饰。

4.铂金:由自然铂、粗铂矿等矿物熔拣而成。因"铂"由"金"和"白"两字组合,颜色又为银白色,故亦称“白金”。色泽银白,金属光泽,硬度4~4.5, 相对密度为21.45。熔点高,为1773℃。富延展性,可拉成很细的铂丝,轧成极薄的铂箔。化学性质极稳定,不溶於强酸强缄,在空气中不氧化。广泛用於珠宝首饰业和化学工业中,用以制造高级化学器皿、铂金坩锅以及加速化学反应速度的催化剂等。

第十六章 硼族元素

本章摘要

1. 单质 硼烷 硼的含氧化合物 硼与硅的相似性。

2. 铝Al2O3的两种变体 铝盐。

3. 镓 铟 铊 单质 氧化物及氢氧化物 盐类Tl(III)的氧化性。

§0. 概述

硼族元素位于III A 族,价电子构型为ns2np1。

硼 B 以硼酸盐矿物存在

铝 Al 以Al-O键存在,矿物以铝矾土(Al2O3)最为广泛, 第3位。

镓 Ga 与Zn, Fe, Al, Cr等矿共生。

铟 In 与闪锌矿共生

铊 Tl 与闪锌矿共生

Ga, In, Tl 属稀散元素,无单独矿藏。

§1.硼

一.单质 黄棕色固体,高硬度,高沸点,原子晶体,结构单元B12二十面体。

1.制备: 用Mg或Al 还原B2O3:。

B2O3 + 3Mg === 3MgO + 2B (高温)。

用H2还原三溴化硼:

2BBr3 + 3H2 === 2B + 6HBr (W丝, 高温)。

2. 硼的反应

常温下不活泼,高温下活泼

4B + 3O2 === 2B2O3。

2B + 3Cl2 === 2BCl3。

2B + N2 === 2BN。

和氧化性酸起反应,比硅活泼些

B + 3HNO3(浓) ==== H3BO3 + 3NO2。

和强碱起反应

2B + 2NaOH(浓) + H2O ===2NaBO2 + 3H2(气体) (偏硼酸钠)。

二 硼烷

硼氢化合物虽没有碳氢化合物种类多, 但远比硅烷多. 其结构比烷烃,硅烷复杂.。

结构

最简单的硼烷,分子式是B2H6, 分子化学键如下:。

端基上的H和B之间形成σ键(sp3-s). 四个端H和两个B形成分子平面,中间两个H不在分子平面内,其连线垂直于分子平面,上下各一个, 上面的H所成的键。

共用价电子44个

乙硼烷制备

质子置换法:

相当于Mg2Si和盐酸反应制备SiH4.。

还原法:

4BCl3 + LiAlH4 === 2B2H6 + 3LiCl + 3AlCl3。

乙硼烷的性质

1° 稳定性

B2H6 === 2B +3 H2。

B2H6要在100℃以下保存,稳定性不如硅烷.。

2 °还原性

B2H6 + 3O2 === B2O3 + H2O 自燃。

属高能燃料,但毒性极大,不易储存.。

3 °水解性

B2H6 + 6H2O===2B(OH)3 + 6H2(气体)。

4 °路易斯酸的反应,缺电子反应。

B2H6 + 2LiH === 2Li(BH4) 白色固体,火箭推进剂。

三 硼的含氧化合物

三氧化二硼

单质硼燃烧或硼酸脱水得B2O3,无色晶体.。

B2O3 + 3H2O ===2H3BO3 硼酸酐。

B2O3和水蒸气反应生成易挥发的偏硼酸:。

B2O3 + HH2O === 2HBO2。

B2O3和许多种金属氧化物在熔融时生成有特征颜色的硼珠,可用于鉴定.。

CoO + B2O3 === Co(BO2)2 深蓝色。

Cr2O3的硼珠 绿色 CuO的硼珠 蓝色。

MnO的硼珠 紫色 NiO的硼珠 绿色。

Fe2O3的硼珠 黄色

2. 硼酸 H3BO3

2 °弱酸性

缺电子结构造成的:

在H3BO3中加入甘油(丙三醇),酸性可增强,原因是显酸性的机理发生了变化:。

H3BO3遇到某种比它强的酸时,有显碱性的可能:。

B(OH)3 + H3PO4==== BPO4 + 3H2O (中和反应)。

3°硼酸的鉴定反应

点燃时: 硼酸三乙酯燃烧显绿色火焰。

3. 硼砂

硼砂是硼的最主要的含氧酸盐, 白色, 玻璃光泽.。

因此硼砂和过渡金属氧化物Cr2O3, CuO, MnO, NiO, Fe2O3等也发生硼珠反应, 而实际上的硼珠反应是用硼砂来做.。

2°硼砂的水解

生成等物质的量硼酸和硼酸盐, 形成缓冲溶液. 0.01的硼砂溶液pH= 9.24.。

四 硼与硅的相似性

相似性

除硼与硅氧化物及含氧酸不相似以外,硼与硅单质的制备, 与酸碱的作用, 氢化物的制备与性质等都相似.。

硼和硅的卤化物水解性也相似:

SiCl4 + 4H2O === H4SiO4 + 4HCl。

BCl3 + 2H2O === HBO2 + 3HCl。

3SiF4 + 4H2O === H4SiO4 + 2H2SiF6 氟硅酸。

4BF3 + 2H2O === HBO2 + HBF4 氟硼酸。

对角线规则

向下金属性加强,向右非金属性加强,向右向下金属性非金属性相近. 实质是原子或离子的电场力引起的, 电场力相近, 对外层 电子的约束力相近。

所以, Li-Mg, Be-Al, B-Si的性质相近。

§2.铝

铝单质和酸碱的反应,还原性,化合物酸碱性, 铝的冶炼中学全部讲过.。

一.Al2O3的两种变体

γ-Al2O3: 由Al(OH)3脱水制得,是既可溶于酸, 又可溶于碱的Al2O3.。

-Al2O3: 若将-Al2O3 高温灼烧, 则变成-Al2O3. -Al2O3 既不溶于酸也不溶于碱. 和KHSO4共熔时转变为可溶物. 其实相当于K2S2O7的熔矿作用。

二 铝盐

向Al3+溶液中滴加Na2CO3得Al(OH)3沉淀, 不能得Al2(CO3)3;。

加Na2S也得Al(OH)3沉淀, 不能得Al2S3.。

水溶液中不能结晶出AlCl3无水盐, 制无水AlCl3要用干法。

2Al + 3Cl2=== 2AlCl3 或。

Al2O3 + 3Cl2 + 3C === 2AlCl3 + 3CO(气体)。

除了铝的氟化物是离子晶体外, 其余卤化物共价性强, 所以熔点沸点较低.。

气相AlCl3, 有双聚分子, 有配位键, 或认为中央是形成三中心四电子的氯桥键.。

§3.镓 铟 铊

单质

1. 物理性质

Ga, In, Tl都是银白色的软金属, 比铅软.m.p.都很低. Ga熔点29.78℃, 但b.p.为2403℃, 以液相存在的温度范围最大. Hg处于液体的温度范围: -38 ~ 356℃。

2. 化学性质

和非氧化性酸反应

2Ga + 3H2SO4 === Ga2(SO4)3 + 3H2(气体) III价 (In的反应相同)。

2Tl + H2SO4 === Tl2SO4 + H2 (气体) I价。

和氧化性酸反应

Ga + 6HNO3 === Ga(NO3)3 + 3NO2 + 3H2O (In的反应相同)。

Tl + 2HNO3 === TlNO3 + NO2 + H2O 不能将Tl氧化到Tl(III)。

和碱反应

2Ga + 2NaOH + 2H2O=== 2NaGaO2 + 3H2(气体) 两性。

二 氧化物及氢氧化物

* Ga2O3和Ga(OH)3两性偏酸;。

*Ga(OH)3可溶于NH3·H2O, Al(OH)3 不溶于NH3·H2O, 所以Ga(OH)3的酸性比Al(OH)3强.。

* In2O3和In(OH)3几乎无两性表现, In2O3溶于酸, 但不溶于碱.。

按Ga(OH)3, In(OH)3, Tl(OH)3顺序, 越来越易脱水, 生成氧化物:。

2M(OH)3 === M2O3 + 3H2O (In2O3黄)。

以致于Tl(OH)3几乎不存在.。

* Tl2O3易分解:

Tl2O3(棕色) === Tl2O(黑色) + O2 (加热)。

* Tl2O易溶于水,形成TlOH也易溶于水:。

Tl2O(黑) + H2O === 2TlOH(黄)。

* 氢氧化物中, TlOH是强碱(不如KOH); Ga(OH)3酸性最强。

三 盐类Tl(III)的氧化性。

Tl有(III)和(I)的盐及化合物, Ga(I)和In(I)难生成, 而Al(I)不存在. MF3为离子型化合物, 其余卤化物为共价型, b.p.低, 由于惰性电子对效应, Tl(III)有较强的氧化性.。

TlX与AgX相似, 难溶, 光照分解; Tl(I)与变形性小的阴离子成盐时, 与K+,Rb+等相似, 如Tl2SO4易溶于水, 易成矾。

氦气的医疗气作用

氦(Helium)简写为He,其原子序为2,原子量为4.002602。是一种无色,无臭,无味,的惰性单原子气体。 元素名来源于希腊文,原意是“太阳”。1868年法国的杨森利用分光镜观察太阳表面,发现一条新的黄色谱线,并认为是属于太阳上的某个未知元素,故名氦。氦在通常情况下为无色、无味的气体,是唯一不能在标准大气压下固化的物质。氦是最不活泼的元素。氦的应用主要是作为保护气体、气冷式核反应堆的工作流体和超低温冷冻剂。 2017年2月6日,中国南开大学的王慧田、周向锋团队及其合作者在《Nature Chemistry》上发表了有关在高压条件下合成氦钠化合物——Na2He的论文[1][2],结束了氦元素无化合物的历史,这标志着我国在稀有气体化学领域走向了最前端。

中文名

英文名

Helium

分子量

4.002602

CAS登录号

7440-59-7

EINECS登录号

231-168-5

沸点

-268.9℃

水溶性

0.0094

外观

无色气体

元素类型

非金属单质

原子序数

发现人

威廉·拉姆塞

有无放射性

元素符号

He

分子式

He

收起

研究历史

威廉·拉姆塞

1868年8月18日,法国天文学家让桑赴印度观察日全食,利用分光镜观察日珥,从黑色月盘背面突出的红色火焰,看见有彩色的彩条,是太阳喷射出来的炽热的光谱。他发现一条黄色谱线,接近钠光谱总的D1和D2线。日蚀后,他同样在太阳光谱中观察到这条黄线,称为D3线。1868年10月20日,英国天文学家洛克耶也发现了这样的一条黄线。[3]。

经过进一步研究,认识到是一条不属于任何已知元素的新线,是因一种新的元素产生的,把这个新元素命名为 helium,来自希腊文helios(太阳),元素符号定为He。这是第一个在地球以外,在宇宙中发现的元素。为了纪念这件事,当时铸造一块金质纪念牌,一面雕刻着驾着四匹马战车的传说中的太阳神阿波罗(Apollo)像,另一面雕刻着詹森和洛克耶的头像,下面写着:1868年8月18日太阳突出物分析。在詹逊从太阳光谱中发现氦时,英人J. N. Lockyer和E. F. Frankland认为这种物质在地球上还没有发现,因此定名为“氦”(法文为hélium,英文为helium),源自希腊语ήλιος,意为“太阳”。[3]。

过了20多年后,拉姆赛在研究钇铀矿时发现了一种神秘的气体。由于他研究了这种气体的光谱,发现可能是詹森和洛克耶发现的那条黄线D3线。但由于他没有仪器测定谱线在光谱中的位置,他只有求助于当时最优秀的光谱学家之一的伦敦物理学家克鲁克斯。克鲁克斯证明了,这种气体就是氦。这样氦在地球上也被发现了。

在二十世纪初的几十年里,世界各国都在寻找氦气资源,在当时主要是为了充飞艇。但是到了二十一世纪,氦不仅用在飞行上,尖端科学研究,现代化工业技术,都离不开氦,而且用的常常是液态的氦,而不是气态的氦。液态氦把人们引到一个新的领域——低温世界。

英国物理学家杜瓦(Dewar)在1898年首先得到了液态氢。就在同一年,荷兰的物理学家卡美林·奥涅斯也得到了液态氢。液态氢的沸点是零下253℃,在这样低的温度下,其他各种气体不仅变成液体,而且都变成了固体。只有氦是最后一个不肯变成液体的气体。包括杜瓦和卡美林·奥涅斯在内的科学家们和决心把氦气也变成液体。

1908年7月13日晚,荷兰物理学家卡美林·奥涅斯(Heike Kamerlingh Onnes昂纳斯)和他的助手们在著名的莱顿实验室取得成功,氦气变成了液体。他第一次得到了320立方厘米的液态氦。

要得到液态氦,必须先把氦气压缩并且冷却到液态空气的温度,然后让它膨胀,使温度进一步下降,氦气就变成了液体。液态氦是一种与众不同的液体,其沸点为零下269℃。在这样低的温度下,氢也变成了固体,与空气接触时,空气会立刻在液态氦的表面上冻结成一层坚硬的盖子。

1934年,在英国卢瑟福那里学习的前苏联科学家卡比查发明了新型的液氦机,每小时可以制造4升液态氦。以后,液态氦才在各国的实验室中得到广泛的研究和应用。[4]。

含量分布

氦存在于整个宇宙中,按质量计占23%,仅次于氢。但在自然界中主要存在于天然气体或放射性矿石中。在地球的大气层中,氦的浓度十分低,只有5.2万分之一。在地球上的放射性矿物中所含有的氦是α衰变的产物。氦在某些天然气中含有在经济上值得提取的量,最高可以含有7%,在美国的天然气中氦大约有1%,在地表的空气中每立方米含有4.6立方厘米的氦,大约占整个体积的0.0005%,密度只有空气的7.2分之一,是除了氢以外密度最小的气体。

地壳中含量 0.008(ppm)

元素在太阳中的含量 230000(ppm)。

元素在海水中的含量 0.000006(ppm)。

地球上的氦主要是放射性元素衰变的产物,α粒子就是氦的原子核。在工业中可由含氦达7%的天然气中提取。也可由液态空气中用分馏法从氦氖混合气体中制得。

原文地址:http://qianchusai.com/helium-100.html

quietly,quietly的比较级和最高级

quietly,quietly的比较级和最高级

succinctly,succinctly和concisely

succinctly,succinctly和concisely

hy3408-140

hy3408-140

cc/队徽

cc/队徽

洗菜的过程作文150字,洗菜的过程作文150字怎么写

洗菜的过程作文150字,洗菜的过程作文150字怎么写

cucumber-40

cucumber-40

FIXTURES-30

FIXTURES-30

n1改双网口,n1盒子改双网口

n1改双网口,n1盒子改双网口

lw/匝道是什么道路,匝道上是什么意思

lw/匝道是什么道路,匝道上是什么意思

iPhone1687-50

iPhone1687-50