Virgo - 黄道第六宫;室女宫;室女(星)座, 属室女座的人(约出生于 8 月 23 日至 9 月 23 日)
那个GREEN什麼的车是四个门的,後面也有个与车本身颜色不同的像敞篷盖的东西。
然而VIRGO是两个门的,从後面看的确跟GREEN有点像,就是那个敞篷盖一样的东西,但是VIRGO的後车灯是打竖的长方形的,看後面和旁边应该就认出来的了。
这个是图片,不是楼上的那张,是本人自己截图的。
希望楼主满意。
距离3位引力波科学家捧得2017诺贝尔物理学奖刚刚过去十几天,一场声势浩大又神秘兮兮的发布会再度吸引了全世界的目光。在引力波探测已经日常化的今天,是什么大新闻能惹出这么大的动静呢?答案于昨晚揭晓了。
北京时间10月16日晚10点,一场长达两小时的新闻发布会在华府全国新闻俱乐部(National Press Club)召开,LIGO执行主任大卫·莱兹(David Reitze)宣布,激光干涉引力波天文台(LIGO)和室女座引力波天文台(Virgo)于2017年8月17日首次发现了一种前所未有的新型引力波事件!由两个质量分别为1.15和1.6个太阳质量的双中子星并合所产生,根据探测日期确定编号为GW170817,距离我们1.3亿光年。此外,在全世界众多天文学家及探测设备的协同努力之下,还发现了该引力波事件的电磁对应体。
2016年初,大卫·莱兹曾站在这同一个地方,宣布人类首次探测到了引力波——那时候我们说,多信使天文学新纪元即将开启。在这一次GW170817的探测中,人类首次同时探测到了引力波及其电磁对应体,这可以被视作引力波多信使天文学纪元真正意义上的开端,在天文学发展史上有着划时代的重大意义。另一方面,双中子星合并通常被认为是伽马射线暴的一类产生源,会产生很多不同的观测现象,所以综合引力波、电磁波等多个方式的观测,我们能够对中子星这一充满谜团的天体做出更为详细的了解。
图1:人类首次探测到双中子星合并的引力波以及相对应的电磁信号。
图2:中子星合并产生的引力波和之前黑洞产生的引力波信号持续时间比较图,此次双中子星持续了大约100秒,这里只是展示了50多秒。
图3:可以看出LIGO引力波信号结束的时间和伽玛暴的开始时间相差了大约2秒钟。
正如我们第一次直接探测到黑洞引力波一样,此次探测到双中子星引力波也完全是一个意外,而且来得有点早。此前,科学家们根据对双中子星的了解和LIGO探测灵敏度的分析比较,估计至少要等到aLIGO进一步升级、达到预期灵敏度之后,LIGO/VIRGO才有可能探测到双中子星合并,差不多至少要等到2019年。人类提前两年成功探测到双中子星合并,算得上是一个美好的惊喜了。如果究其原因,除了探测到的这一系统距离我们比较近之外,多方面联合协作是促成此次成功探测的重要因素。
1、全球协作,锁定目标
GW170817的探测过程振奋人心、值得一表,比国际刑警跨洲追捕逃犯还要精彩。
2017年8月17日,分布在全球各地的天文学家们获得了一个消息,LIGO和Virgo探测器探测到了一个持续时间为100秒左右的新引力波信号,其形式与两个中子星的并合相一致。在该引力波信号到达后大约1.7秒,NASA费米卫星搭载的伽玛暴监测器(GBM)和欧洲INTEGRAL望远镜搭载的SPI-ACS探测器均探测到了一个暗弱的短时标伽马射线暴,并将其命名为GRB170817A。由于二者时间和空间的一致性,被认为与引力波事件成协(“成协”指两种现象是相关的)。
在得知这一消息之后,全世界各地的望远镜就开始了忙碌的观测。在不到11个小时之内,位于智利的Swope超新星巡天(SSS)望远镜首先在星系NGC4993中观测到了明亮的光学源,初步确认为其光学对应体,编号为AT2017gfo/SSS17a。在此之后,其他几个团队分别独立探测到了该光学源,从而加以确认。
在接下来的几个星期之内,天文学家动用了世界上最为先进的一些望远镜,比如钱德拉X射线空间望远镜(Chandra X-ray Telescope),哈勃空间望远镜,位于智利、口径达到8.4米的甚大望远镜(Very Large Telescope),还有亚毫米波段灵敏度最高的阿塔卡马大型毫米波阵ALMA等等,对该区域开展了紧锣密鼓的观测。这些观测对这一灾变性事件提供了从并合前约100秒到并合后数星期的全面描述,最终证实了科学家的很多猜想:NGC4993星系中的两个中子星并合,产生了引力波、短伽玛暴暴和千新星。
图4:(左)欧南台几个不同望远镜看到引力波源对应的光学图像。(右)哈勃望远镜在不同时间观测到的图像。
此次探测堪称全球协作的一次完美体现,不过,就像大卫·莱兹在发布会上所说,NASA费米卫星伽玛暴信号的探测使得此次LIGO探测大放光彩。尽管引力波信号先于伽马射线信号产生,但有趣的是,NASA费米卫星发送的探测信号要早于LIGO团队的信号。原因在于,NASA费米卫星的伽玛暴监视器在探测到伽玛暴信号GRB170817A之后,自动向GCN系统发送了相关警报。然而,LIGO的自动数据分析就耗时约6分钟——科学家们先是在LIGO汉福德观测站几乎同一时刻的数据中,找到了一个引力波事件候选体GW170817,发现此引力波早于GRB170817A两秒发生,LIGO-Virgo快速响应团队随后手动检查了数据,才向其签订合作协议的组织发布了警报。之后,科学家又进一步在欧洲INTEGRAL卫星的观测数据中确认了伽玛暴信号的存在。本来平淡无奇的伽玛暴信号,因为与一个很强的引力波候选体同时存在,一下子引起了整个天文界的观测兴趣,此天区也成为了一个热门的观测对象。
在9月底的第四次引力波发布会上,姗姗来迟的VIRGO已使得LIGO探测器的空间定位范围从1160平方度收缩到100平方度,二者协同合作,将空间位置的精确性大大提升。如果进一步利用贝叶斯统计方法对所有可能参数进行估算,空间定位将进一步缩减至60平方度。这样一来,空间定位就足足提高了将近20倍。在这次的双中子星事件中,三个探测器最终将产生源定位于一个28平方度的范围之内。正因空间定位准确性大大提高,电磁波段所探测到的空间确认才成为了可能。
图5:目前探测到的5次引力波空间定位比较图,黄色是最新的引力波GW170817确定的引力波源所在的区域。
联合观测的另一个重要意义是快速反应。无论是费米观测到的伽玛暴,还是LIGO/VIRGO看到的引力波,持续时间都非常短暂,所以需要其它天文台和观测者立即对于可能区域进行后续的追踪观测,这就需要某个系统即时通知可能的位置信息。
对于伽玛暴而言,在上世纪末BeppoSAX卫星在轨工作期间,网络已经兴起,NASA建立了一个伽玛射线暴协调网络(Gamma-ray Coordinates Network, GCN)的邮件系统;一旦某个卫星探测到伽玛暴信号,将会以最快速度把伽玛暴的位置信息发送到此系统中,凡是订阅了该邮件系统的人都能够即时收到提示,以便开展可能的观测。此次费米观测正是利用此系统,将观测信息以最快的速度通知给了全球的很多组织,随后才有众多望远镜纷纷加入观测。当然,对于LIGO/VIRGO组织而言,为了保证其可能的后续观测,他们与全球近70个观测组织(中国有将近10个组织)签订了备忘录合同,一旦引力波信号被探测到,也会通过其特有的渠道传递相关信息。
2、比双黑洞合并更美的双中子星合并。
正如发布会提到的,这次探测到的引力波是由双中子星合并而产生,之前公布的4例引力波事件都是由双黑洞所产生。二者之间最大的差别就在于,双中子星合并会产生电磁波辐射,而对于黑洞而言,我们通常认为不会产生,这一点也得到了观测上的验证。
是什么原因导致了此种差别呢?通常而言,按照天体物理辐射的理论要求,要产生电磁辐射,天体周围必须要有气体的存在。对于黑洞系统而言,尽管在最初产生时,黑洞周围可能有很多气体,然而在漫长的演化过程当中,如果没有更多气体来源的话,在黑洞合并的最后阶段,气体已消耗完毕,所以无法产生电磁辐射,只能产生扰动时空的引力波——就像科学家前4次探测到的那样。
在双中子星合并之前,周围的气体很可能也已消耗完毕。然而,合并过程当中会有部分物质以接近光速或远低于光速的速度被抛射出去,从而产生我们看到的各种电磁现象——短时标伽马射线暴(简称伽玛暴)、伽玛暴余辉和千新星。接近光速运动的物质产生了费米卫星看到的伽玛暴,而低速运动的物质产生了千新星,被很多的光学/红外望远镜捕捉到。
等等,短时标伽马射线暴、伽玛暴余辉和千新星都是什么?让我们一一说来。
简单来说,伽玛暴是天空中某一个方向伽马射线辐射突然增亮的现象,可以说是宇宙间自大爆炸之后最为剧烈的天体爆发现象。20世纪90年代初,康普顿伽马射线天文台在观测到上千个伽玛暴之后做了一个简单统计,按照它们持续时间的长短分为两大类:一类是爆发时间长于2秒的长时标伽玛暴,另一类是爆发时标短于2秒的短时标伽玛暴。后经深入研究发现,这两种伽玛暴的产生起源完全不同。
根据目前的理解,无论是大质量恒星坍缩形成的长时标伽玛暴,还是双致密星产生的短时标伽玛暴,尽管中心天体会有差别(或者是黑洞,或者是转动极快的磁星),伽玛暴的产生机制以及之后的演化都可以用一个被称为“火球”模型(fireball model)的理论来解释。在这个理论中,中心天体会在一段时间内,产生相对持续的极端相对论喷流,这就意味着,这些喷出物质会以接近光速速度,沿着天体的转轴方向向外运动。因为喷射出去的物质之间存在着速度上的微小差别,导致它们彼此发生碰撞,将自身运动的动能转化为气体粒子的热能,而后在磁场作用下产生我们所看到的高能辐射,也就是早期的伽马射线,这就很好地解释了我们所看到的伽玛暴。大质量恒星产生的喷流时间长,双中子星合并产生的喷流时间短,从而导致了我们观测上的差别。
这些星体周围存在着星际气体介质,喷流物质在停止相互碰撞之后会继续向外运动,与周围的气体介质发生相互作用,把自身运动的能量传递给周围的星际气体,星际气体被加热从而产生较强的辐射,这就是所谓的伽玛暴余辉。它的能谱(energy spectrum)波段会从X射线一直延伸到射电波段。在一定程度上,余辉的强弱与周围星际气体的密度相关,密度更高,余辉也就更亮。
此次与引力波相关的伽玛暴属于短时标伽玛暴,因为费米卫星观测到的爆发时标为0.7秒。除此之外,无论是引力波的结果还是电磁波的观测拟合结果,也都和双中子星合并的预期相一致。例如,引力波波形的拟合告诉了我们中子星的质量,与中子星的质量范围一致。
在双中子星合并的过程当中,有大约1/1000到1/100左右太阳质量的物质沿各个方向被抛射出去,形状近似于一个球体。这些抛射出去的物质通过快中子俘获过程产生大量的重元素。这些元素很不稳定,能够快速衰变,产生辐射加热抛射物,从而使其发出明亮的可见光以及近红外辐射,其亮度通常会达到千倍的新星级别,故被称为“千新星”。因为这个千新星距离地球很近,所以非常明亮,是之前探测到的短时标伽玛暴距离的十分之一。
图6:双中子星旋近,最终合并产生千新星的过程。
因为产生引力波的天体完全不同,所以我们观测到的引力波形会存在较大差别。中子星的质量相较于黑洞要小很多,合并过程中对于时空的扰动变形程度更弱,所以,在目前探测器灵敏度确定的情况下,我们只可能探测到比较临近的引力波信号。这次的引力波源距离我们1.3亿光年,是目前探测到的所有引力波源中最近的一例。通过波形的拟合,科学家们确定了两个中子星的质量分别大约是1.15和1.6个太阳质量,合并后的天体质量约为2.74个太阳质量,抛射出去的仅有0.01个太阳质量。
3、已解之惑与未解之谜
此前,无论是对于中子星本身,还是双中子星合并产生的伽玛暴,我们还有很多的疑难问题有待解答。双中子星合并之后,产生的是转速更快的中子星还是黑洞?有多少物质会在爆发中被抛射出去?喷流的机制和喷流的夹角是怎样的?我们都还不能确定。
此外,到目前为止,科学家对于中子星内部的组成和结构仍不是特别清楚。而当两个中子星互相靠近但未合并之时,两个中子星会被彼此的潮汐力拉扯严重变形,从而最终影响旋近的速度,也会影响产生的引力波波形。所以,科学家们希望,引力波和电磁波的联合观测能够对这些问题提供一部分珍贵的答案。
遗憾的是,受限于目前引力波探测设备的灵敏度,引力波信号曲线并不是很好,所以对于有关内部结构的问题并没有得到解答。但是,对于部分合并之后抛出了多少物质的问题,我们已经初步有了答案。值得骄傲的是,这一答案是由一部参与观测的中国望远镜给出的。(答案后文马上揭晓)
双中子星合并之后是产生了中子星,还是产生了黑洞?现在依然无法确定。因为通过引力波波形的拟合,合并后的质量约为2.74太阳质量。从理论上说,如果一个天体的质量超过3个太阳质量,通常会被认为是黑洞。而中子星的最大允许值并不明确,如果中子星的内部由中子构成,综合考虑状态方程和转速,要想达到2.74个太阳质量不太可能。然而如果内部由其他的奇异物质(比如夸克)构成的话,在一定条件下,这个质量的天体就有一定可能性,此时这一天体应该被称为“夸克星”。不过,目前所有观测都没能给出中子星和黑洞的临界质量,当然也没能给出夸克星存在的证据。从观测的角度而言,我们观测到的最重的中子星大约是2个太阳质量,最小质量的黑洞质量是5个太阳质量;在这两者之间,一片空白,还未发现任何致密天体的质量属于这个范围。所以,对于此次双中子星合并产生的2.74个太阳质量的天体,尽管我们还不能确定它到底是什么,但是这一发现填补了黑洞和中子星之间的空白,为日后更多的天文发现掀起了帷幕的一角。
图7:目前所探测到的黑洞和中子星质量分布图,可以看到两者之间存在一个很大的空白,此次探测是第一个填进此空白区域的天体。
尽管科学家们没有看到中子星内部信息,也不知道最终的合并物是什么,但众多后续电磁观测还是告诉我们了一些之前不太确定的信息,比如甚大望远镜(VLT)的光谱观测确认了重金属(比如我们熟知的金银等元素)的来源,大多数就是在中子星合并的过程当中产生的。
图8:元素起源表。黄色代表了并合中子星所产生的元素,我们常见的金银就是通过此过程产生的。
之前科学家曾在短时标伽玛暴中探测到了3起疑似千新星事例,但只不过是在余辉的光变曲线当中看到了几个数据点而已。因为此次由于距离很近,而且伽玛暴余辉很弱,所以完全确认了千新星的存在。另外,通过对于其光变曲线演化的拟合可以推断,大约有百分之一的物质在合并过程中被抛射出去。
除此之外,电磁信号和引力波信号的结合对于天文学理论本身有何促进意义呢?一方面,科学家可以通过这两个信号到达的时间差,来检验爱因斯坦的弱等效原理,这是爱因斯坦广义相对论和其它引力理论的基石,爱因斯坦的理论再一次通过了检验。
另外,引力波信号和电磁信号相结合,可以对宇宙学的一些最基本参数做出限制,比如用来描述宇宙膨胀快慢的哈勃常数。通过引力波的振幅比对可以推断出系统到我们的光度距离,通过电磁波段的光谱分析,我们便可以知道这一系统的红移;在给定两者的情况之下,我们便能够推算出哈勃常数的数值了:
相较于来自普朗克卫星的数值:
很明显,引力波给出的数值误差很大。但可以预见的是,随着探测精度的提高(除LIGO/VIRGO之外,日本臂长为3公里KAGRA探测器也开始测试,LIGO-India以及很多的第三代引力波探测器在计划之中)以及探测到的引力波源数目的增多,这个误差很快将得到改进。
此次引力波现象发生在南天的长蛇座,北天的望远镜很难看到,所以中国的大多数望远镜没能进行观测,比如刚刚建成的FAST以及很多光学望远镜(云南丽江的2.4米望远镜和国家天文台兴隆观测站的2.16米光学望远镜等)。
不过幸运的是,中国有两台望远镜参与了此次观测,一个是位于南极Dome A的50厘米的南极光学巡天望远镜(AST3),项目的负责人是紫金山天文台的王力帆研究员。在引力波源信息发布的约一天后,AST3望远镜开展了对于这个目标源的观测。而当时南极的冬天也刚刚过去,目标天体的地平高度较低,受于太阳的限制,每天差不多有2个小时左右的观测时间。此望远镜最终进行了10天的观测,最终得到了目标天体的光变曲线,与巨新星理论预测高度吻合。
另外一个参与观测的是硬X射线调制空间望远镜(又名慧眼)。在观测消息发布时,事件刚好在其观测范围之内,不过很遗憾的是,尽管慧眼是此能段内灵敏度最高的观测设备,但是未能在0.2-5 MeV的能段内探测到任何电磁信号,这很可能与此伽玛暴并非完全正对我们有关。
这是人类历史上第一次同时探测到引力波及其电磁对应体,将成为引力波天文学上另外一个非常重要的里程碑。此次探测为我们解答了一些疑惑,同时也提出了更多问题,与历史上所有天文发现一样,是人类好奇心的胜利与新起点。在多信使引力波天文学时代的帷幕由此拉开之后,我们相信,在人类团结协作的力量之下,更多的宇宙奥秘将被一一揭晓。
在物理学中,引力波是指时空弯曲中的涟漪,通过波的形式从辐射源向外传播,这种波以引力辐射的形式传输能量。在1916年[1] ,爱因斯坦基于广义相对论预言了引力波的存在。引力波的存在是广义相对论洛伦兹不变性的结果,因为它引入了引入了相互作用的传播速度有限的概念。相比之下,引力波不能够存在于牛顿的经典引力理论当中,因为牛顿的经典理论假设物质的相互作用传播是速度无限的。
各种各样的引力波探测器正在建造或者运行当中,比如 advanced LIGO(aLIGO)从2015年9月份开始运行观测。
可能的引力波探测源包括致密双星系统(白矮星,中子星和黑洞)。在2016年2月11日,LIGO科学合作组织和Virgo合作团队宣布他们已经利用高级LIGO探测器,已经首次探测到了来自于双黑洞合并的引力波信号[2] 。
<img src="http://baike.bdimg.com/cms/static/yinlibo.png" =title”引力波v百科"="">。
中文名
引力波
外文名
Gravitational wave。
别 称
Gravity wave
提出者
美国马里兰大学教授J·韦伯
提出时间
1959年
应用学科
天文学、物理学、量子力学
适用领域范围
天文观测
报告发现时间
北京时间2016年2月11日23:30左右。
发现地点
美国激光干涉引力波天文台
目录
1 介绍
2 引力波的探测历史
3 中国引力波探测
4 宇宙引力波源
5 天文上的意义
介绍
在爱因斯坦的广义相对论中,引力被认为是时空弯曲的一种效应。这种弯曲时因为质量的存在而导致。通常而言,在一个给定的体积内,包含的质量越大,那么在这个体积边界处所导致的时空曲率越大。当一个有质量的物体在时空当中运动的时候,曲率变化反应了这些物体的位置变化。在某些特定环境之下,加速物体能够对这个曲率产生变化,并且能够以波的形式向外以光速传播。这种传播现象被称之为引力波。
当一个引力波通过一个观测者的时候,因为应变(strain)效应,观测者就会发现时候时空被扭曲。当引力波通过的时候,物体之间的距离就会发生有节奏的增加和减少,这个频率对于这了引力波的频率。这种效应的强度与产生引力波源之间距离成反比。绕转的双中子星系统被预测,在当它们合并的时候,是一个非常强的引力波源,由于它们彼此靠近绕转时所产生的巨大加速度。由于通常距离这些源非常远,所以在地球上观测时的效应非常小,形变效应小于1.0E-21。科学家们已经利用更为灵敏的探测器证实了引力波的存在。目前最为灵敏的探测是aLIGO,它的探测精度可以达到1.0E-22。更多的空间天文台(欧洲航天局的eLISA计划,中国的中国科学院太极计划,和中山大学的天琴计划)目前正在筹划当中。
引力波应该能够穿透那些电磁波不能穿透的地方。所以猜测引力波能够提供给地球上的观测者有关遥远宇宙中有关黑洞和其它奇异天体的信息。而这些天体不能够为传统的方式,比如光学望远镜和射电望远镜,所观测到,所以引力波天文学将给我们有关宇宙运转的新认识。尤其,引力波更为有趣的是,它能够提供一种观测极早期宇宙的方式,而这在传统的天文学中是不可能做到的,因为在宇宙再合并之前,宇宙对于电磁辐射是不透明的。所以,对于引力波的精确测量能够让科学家们更为全面的验证广义相对论。
(图1)
图1:引力波谱;不同引力波源所对应的频率范围(注意频率是取了对数后的值),周期。以及所对应的探测方式。
通过研究引力波,科学家们能够区分最初宇宙奇点所发生的事情。原则上,引力波在各个频率上都有。不过非常低频的引力波是不可能探测到的,在非常高频的区域,也没有可靠的引力波源。霍金(Stephen Hawking) 和 以色列(Werner Israel) 认为可能可以被探测到的引力波频率,应该在1.0E-7 Hz 到1E11Hz之间。
引力波在不断的通过地球;然而,即使最强的引力波效应也是非常小的,并且这些源距离我们很远。比如GW150914在最后的剧烈合并阶段所长的引力波,在穿过13亿光年之后到达地球,最为时空的涟漪,也仅仅将LIGO的4公里臂长改变了一个质子直径的万分之一,也相当于将太阳系到。
我们最近恒星之间距离改变了一个头发丝的宽度。这种及其微小的变化,如果不借用异常精密的探测器,我们根本是探测不到的。
(图2)
图2:LIGO的两个观测站探测到了同一个引力波事件。上面为观测得到的曲线,下面是和理论相比较之后的拟合结果。(来源于LIGO所发文章[3] )
引力波的探测历史
在过去的六十年里,有许多物理学家和天文学家为证明引力波的存在做出了无数努力。其中最著名的要数引力波存在的间接实验证据——脉冲双星 PSR1913+16。1974年,美国麻省大学的物理学家家泰勒(Joseph Taylor)教授和他的学生赫尔斯(Russell Hulse)利用美国的308米射电望远镜,发现了由两颗质量大致与太阳相当的中子星组成的相互旋绕的双星系统。由于两颗中子星的其中一颗是脉冲星,利用它的精确的周期性射电脉冲信号,我们可以无比精准地知道两颗致密星体在绕其质心公转时他们轨道的半长轴以及周期。根据广义相对论,当两个致密星体近距离彼此绕旋时,该体系会产生引力辐射。辐射出的引力波带走能量,所以系统总能量会越来越少,轨道半径和周期也会变短。
泰勒和他的同行在之后的30年时间里面对PSR1913+16做了持续观测,观测结果精确地按广义相对论所预测的那样:周期变化率为每年减少76.5微秒,半长轴每年缩短3.5米。广义相对论甚至还可以预言这个双星系统将在3亿年后合并。这是人类第一次得到引力波存在的间接证据,是对广义相对论引力理论的一项重要验证。泰勒和赫尔斯因此荣获1993年诺贝尔物理学奖。到目前为止,类似的双中子星系统只已经发现了将近10个。但是此次发布会中的双黑洞系统却从来没被发现过,是首次。
在实验方面,第一个对直接探测引力波作伟大尝试的人是韦伯(Joseph Weber)。早在上个世纪50年代,他第一个充满远见地认识到,探测引力波并不是没有可能。从1957年到1959年,韦伯全身心投入在引力波探测方案的设计中。最终,韦伯选择了一根长2米,直径0.5米,重约1吨的圆柱形铝棒,其侧面指向引力波到来的方向。该类型探测器,被业内称为共振棒探测器:当引力波到来时,会交错挤压和拉伸铝棒两端,当引力波频率和铝棒设计频率一致时,铝棒会发生共振。贴在铝棒表面的晶片会产生相应的电压信号。共振棒探测器有很明显的局限性,比如它的共振频率是确定的,虽然我们可以通过改变共振棒的长度来调整共振频率。但是对于同一个探测器,只能探测其对应频率的引力波信号,如果引力波信号的频率不一致,那该探测器就无能为力。此外,共振棒探测器还有一个严重的局限性:引力波会产生时空畸变,探测器做的越长,引力波在该长度上的作用产生的变化量越大。韦伯的共振帮探测器只有2米,强度为1E-21的引力波在这个长度上的应变量(2E-21米)实在太小,对上世纪五六十年代的物理学家来说,探测如此之小的长度变化是几乎不可能的。虽然共振棒探测器没能最后找到引力波,但是韦伯开创了引力波实验科学的先河,在他之后,很多年轻且富有才华的物理学家投身于引力波实验科学中。
在韦伯设计建造共振棒的同时期,有部分物理学家认识到了共振棒的局限性,然后就有了前面提到的有基于迈克尔逊干涉仪原理的引力波激光干涉仪探测方案。它是由麻省理工学院的韦斯(Rainer Weiss)以及马里布休斯实验室的佛瓦德(Robert Forward)在70年代建成。到了70年代后期,这些干涉仪已经成为共振棒探测器的重要替代者。激光干涉仪对于共振棒的优势显而易见:首先,激光干涉仪可以探测一定频率范围的引力波信号;其次,激光干涉仪的臂长可以做的很长,比如地面引力波干涉仪的臂长一般在千米的量级,远远超过共振棒。
除过我们刚刚提到的aLIGO, 还有众多的其他引力波天文台。位于意大利比萨附近,臂长为 3千米的VIRGO;德国汉诺威臂长为600米的GEO;日本东京国家天文台臂长为300米的TAMA300。这些探测器曾在2002年至2011年期间共同进行观测,但并未探测到引力波。所以之后这些探测器就进行了重大升级,两个高新LIGO(升级版的LIGO)探测器于2015年开始作为灵敏度大幅提升的高新探测器网络中的先行者进行观测,而高新VIRGO(升级后的VIRGO)也将于2016年年底开始运行。日本的项目TAMA300进行了全面升级,将臂长增加到了3公里,改名为叫KAGRA,预计2018年运行。
因为在地面上很容易受到干扰,所以物理学家们也在向太空进军。欧洲的空间引力波项目eLISA(演化激光干涉空间天线)。eLISA将由三个相同的探测器构成为一个边长为五百万公里的等边三角形,同样使用激光干涉法来探测引力波。此项目已经欧洲空间局通过批准,正式立项,目前处于设计阶段,计划于2034年发射运行。作为先导项目,两颗测试卫星已经于2015年12月3日发射成功,目前正在调试之中。中国的科研人员,在积极参与目前的国际合作之外之外,也在筹建自己的引力波探测项目。
中国引力波探测
从爱因斯坦在1916年预测出引力波,到2015年LIGO获得直接观测证据,整整跨越了一百年。在这一过程中,中国科学家也在不断寻觅、追求。早在上世纪70年代,中国科学家就开始了引力波研究,可惜因种种原因停滞了十几年,造成了人才断层。直到2008年,在中科院力学所国家微重力实验室胡文瑞院士的推动下,中科院空间引力波探测工作组成立,引力波的中国研究再启征程。
目前,我国主要有三个大型引力波探测项目,一个是由中科院胡文瑞院士和吴岳良院士作为首席科学家的太极计划,它非常类似于欧洲eLISA计划。另外一个太空计划是由中山大学罗俊院士领衔的“天琴计划”,相比较太极,它将位于地球之上的10万公里轨道处,三个卫星的间距也是大约在10万公里之上。第三个是由中科院高能物理研究所主导的“阿里实验计划”,阿里实验计划是在计划在我国西藏的阿里地区放置一个小型但具有大视场的射电望远镜,从地面上聆听原初引力波的音符。这些项目现在预研阶段。
这些探测都是利用激光干涉的方式。而我们的宇宙本身就已经“创造”出了一种探测工具 — 毫秒脉冲星,它们是大质量恒星发生超新星爆炸形成的高速旋转的致密天体。这些旋转极其稳定的天体是自然界中最精确的时钟。这些极其稳定的恒星是自然界中最精确的时钟,像灯塔一样每“滴答”一次就向地球扫过一组信号。引力波可以通过虽然非常细微,但还是能够察觉到的时间涨落而探测到。这就是脉冲星计时(Pulsar Timing)的方法。中国正在建设的500米口径望远镜,以及国际上正在建设的平方公里阵(SKA)射电望远镜,都将监测脉冲星,从而探测引力波的存在。
宇宙引力波源
那么在我们的宇宙当中,什么样的天体才能够撼动产生可以探测到的引力波呢?对于地面上的探测器,通过认为下面的四种可以产生:
(1)旋进(In-spiral)或者合并的致密星双星系统。比如中子星或者黑洞的双星系统。非常类似于发布会当中的系统。
(2)快速旋转的致密天体。这类天体会通过周期性的引力波辐射损失掉角动量,它的信号的强度会随着非对称的程度增加而增加。可能的候选体包括非对称的中子星之类的。
(3)随机的引力波背景。非常类似于我们通常熟知的宇宙背景辐射,这一类背景引力波,也通常叫做原初引力波,它是早期宇宙暴涨是的遗迹。2014年由加州理工、哈佛大学等几个大学的研究人员所组成的BICEP2团队曾宣称利用南极望远镜找到了原初引力波,但是后来证实为银河系尘埃影响的结果。原初引力波的探测将是对暴胀宇宙模型的直接验证,对于它的探测依旧在努力寻找之中。
(4)超新星或者伽马射线暴爆发。恒星爆发时非对称性动力学性质也会产生引力波。而直接探测到来自于这些天体的引力波,将是提供对这些天体最直接而且最内部的信息。
以上的天体都能够产生地面探测器所探测到的引力波信号(频率大约几到几百赫兹)。还有一类天体,也能够产生比较较强的引力波,只是产生的频率比较低而已(频率在0.01赫兹以下)。
(5)超大质量黑洞。在星系的中心,我们知道会有一个超大质量黑洞的存在。星系在演化的过程当中,会彼此合并,所以在某些星系中间,会有两个黑洞。非常类似于LIGO所探测到的双恒星级黑洞,这两个双黑洞在绕转和最终的合并的之时,也会产生很强的引力波。这种引力波可以利用空间探测器来探测。
天文上的意义
在过去的一个世纪,因为新的观测宇宙的方法使用,天文学已经发生了改革性的变化。天文观测最初使用可见光。400多年前,伽利略最早使用望远镜进行观测。然而,可见光仅仅是电磁波谱上的一小部分,在遥远的宇宙中,并非所有的天体会在这个特别的波段产生很强的辐射,比如,更有用的信息或许可以在射电波段得到。利用射电望眼镜,天文学家们已经发现了脉冲星,类星体以及其他的一些极端天体现象,将我们对一些物理的认识推向了极限。利用伽马射线,X射线,紫外,和红外观测,我们也取得了类似的进展,让我们给天文带来了新的认识。每一个电磁波谱的打开,都会为我们带来前所未有的发现。天文学家们同样期望引力波也是如此。
引力波有两个非常重要而且比较独特的性质。第一:不需要任何的物质存在于引力波源周围。这时就不会有电磁辐射产生。第二:引力波能够几乎不受阻挡的穿过行进途中的天体。然而,比如,来自于遥远恒星的光会被星际介质所遮挡,引力波能够不受阻碍的穿过。这两个特征允许引力波携带有更多的之前从未被观测过的天文现象信息。
你好!
70年阴历7月27是公历1970年8月28日,是处女座。
处女座(virgo),出生日期为8月23日—9月22日,在狮子座之东,天秤座之西,是黄道十二宫的第六宫。
中文名
处女座
外文名
Virgo
出生日期
8月23日~9月22日
星座属性
土象
掌管宫位
第六宫
星座简介
星座名称:处女座
英文名:Virgo
日期:8月23日~9月22日
最大特征:分析力
星座属性:土象
金属:水银
守护星:水星
守护神:赫尔墨斯
阴阳性:阴性
三方宫:变动宫
掌管宫位:第六宫
掌管身体:腹、肠
幸运数字:4、5、8
对宫星座:双鱼座
幸运物:乌鸦
幸运日:星期三
幸运色:灰色、米色
幸运石:紫黄晶、粉玉
幸运花:文心兰、葱兰、四季兰
幸运爱好:钓鱼、野餐等
幸运方位:西北偏西方、西南偏南方。
喜欢的场所:可以学习的地方、市场、饭店、农田,一切卖生活实用品的商店。
理想的游居国:巴西、瑞士、利比里亚、巴拿马、新英格兰。
居住条件:适合幽静雅致、不染尘埃的住宅,应具备宽敞的客厅和厨房,最好有自己的单独房间。以远离繁华市区为宜,最好坐落在江边或绿树成荫之处,应当能够保护个人隐私。门窗朝西北偏西方或西南偏南方较吉利,庸俗的风格不利于你的精神健康。
希望对你有所帮助!望采纳!