1~10的阶乘的结果如下:
1!=1
2!=2*1=2
3!=3*2*1=6
4!=4*3*2*1=24
5!=5*4*3*2*1=120。
6!=6*5*4*3*2*1=720。
7!=7*6*5*4*3*2*1=5040。
8!=8*7*6*5*4*3*2*1=40320。
9!=9*8*7*6*5*4*3*2*1=362880。
10!=10*9*8*7*6*5*4*3*2*1=3628800。
扩展资料:
1、阶乘是数学术语,是由基斯顿·卡曼于 1808 年发明的运算符号。
一个正整数的阶乘等于所有小于及等于该数的正整数的乘积,并且0的阶乘为1。自然数n的阶乘写作n!。
2、阶乘计算的公式
(1)n的阶乘用公式表示为:n!=1*2*3*......*(n-1)*n,其中n≥1。
(2)当n=0时,n!=0!=1。
参考资料来源:百度百科-阶乘
n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
亦即n!=1×2×3×...×n。阶乘亦可以递归方式定义:0!=1,n!=(n-1)!×n。
扩展资料
双阶乘用“m!!”表示。
当 m 是自然数时,表示不超过 m 且与 m 有相同奇偶性的所有正整数的乘积。如:
当 m 是负奇数时,表示绝对值小于它的绝对值的所有负奇数的绝对值积的倒数。
当 m 是负偶数时,m!!不存在。
任何大于等于1 的自然数n 阶乘表示方法:
资料来源:阶乘_百度百科
高中数学n的阶乘公式为:1×2×3×…×n。
n的阶乘的通项公式解析:
如果数列an的第n项an与n之间的关系可以用一个公式来表示,这个公式叫做数列的通项公式。有的数列的通项可以用两个或两个以上的式子来表示。没有通项公式的数列也是存在的,如所有质数组成的数列。
数列,是以正整数集为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项,排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
通项公式定义:
按一定次序排列的一列数叫做数列,数列中的每一个数都叫做这个数的项,各项依次叫做第1项(或首项),第2项,...,第n项,...。
数列也可以看作是一个定义域为自然数集N(或它的有限子集{1,2,3,...,n})的函数,当自变量从小到大依次取值时对应的一列函数值。
阶乘的主要公式:
1、任何大于1的自然数n阶乘表示方法:n!=1×2×3×……×n。
2、n的双阶乘:当n为奇数时表示不大于n的所有奇数的乘积 ,如:7!=1×3×5×7。
3、当n为偶数时表示不大于n的所有偶数的乘积(除0外),如:8!=2×4×6×8。
4、小于0的整数-n 的阶乘表示:(-n)!= 1 / (n+1)!。
一个正整数的阶乘是所有小于及等于该数的正整数的积,并且0的阶乘为1。自然数n的阶乘写作n!。1808年,基斯顿·卡曼引进这个表示法。
定义的必要性
由于正整数的阶乘是一种连乘运算,而0与任何实数相乘的结果都是0,所以用正整数阶乘的定义是无法推广或推导出0!=1的,即在连乘意义下无法解释“0!=1”,给“0!”下定义只是为了相关公式的表述及运算更方便。
阶乘的计算方法是1乘以2乘以3乘以4,一直乘到所要求的数,例如所要求的数是6,则阶乘式是1×2×3×…×6,得到的积是720,720就是6的阶乘。
1、n!是指自然数n的阶乘,即:n!=1*2*3…(n-2)*(n-1)*n。阶乘符号“!”是由基斯顿·卡曼于1808年提出的。
2、例子思路:
(1)N=3时,3 * 3 * 3 = 27, 最左边的数字是 2.。
(2)N=4时,4 * 4 * 4 * 4 = 256, 最左边的数字是 2.。
思路:N^N是一个整数,可以表示成一个小数乘以10^(k-1),即N^N=frist.xxxxx*10^(k-1).。
3、"n!"的定义就是n!=1×2×3...xn,n!=X×(X-1)×(X-2)...×1,这是因为在1751年,欧拉以大写字母M表示m阶乘M=1x2x3...x...m。
4、当n较大时,直接计算n!变得不可能,这时可通过斯特灵(Stirling)公式计算近似算或取得大小范围。
扩展资料:
1799年,鲁非尼在他出版的方程论著述中,则以小写字母π表示m阶乘。而在1813年,高斯则以Π(n)来表示n阶乘。而用来表示n阶乘的方法起源于英国,但仍未能确定始创人是谁。直至1827年,由于雅莱特的建议而得到流行,现在有时也会以这个符号作为阶乘符号。
参考资料:百度百科-n!