多分散颗粒polydispersed particle : 即众多的小颗粒(如液滴、固体粒子或小气泡)分散在连续相中,这些小颗粒粒径大小不一样; 单分散颗粒monodisperse particle: 通常是指分散相(也就是你说的小颗粒)品种单一且粒度分布很窄(即粒径绝大部分相同)的分散体系。
多分散颗粒polydispersed。
particle
即众多的小颗粒(如液滴、固体粒子或小气泡)分散在连续相中,这些小颗粒粒径大小不一样;
单分散颗粒monodisperse。
particle:
通常是指分散相(也就是你说的小颗粒)品种单一且粒度分布很窄(即粒径绝大部分相同)的分散体系。
一般分别为发散合成法、收敛合成法、发散收敛结合法。 发散合成是从所需的树状大分子的中心点开始向外扩展来进行合成反应的。从中心核开始,该中心核拥有一个或多个反应点,然后用带有分支结构的单元与中心核反应,即得到了第一代分子。将第一代分子分支末端的官能团转化为可继续进行反应的官能团,然后重复与分支单元反应物进行反应则得到第二代分子。不断重复以上的两个步骤,就可以得到期望的树状大分子。
优点是化合物增长过程中反应点逐渐增多,可以合成较高的代数; 缺点是末端官能团反应不完全将会导致下一级产物产生缺陷,而且随着分子的增大这种现象出现的机会也就越大。
? 收敛法是由树枝形聚合物的外围逐步向内合成的方法。反应是由将要生成树枝形聚合物最外层结构的部分开始,然后与分支单元反应物反应得到第一代分子;之后将基团活化后再与分支单元反应物继续反应得到第二代分子。如此不断地重复将基团活化,并与分支单元反应物进行连接,就可合成出更高代数的树枝形聚合物。
与发散合成相比,其优点为:收敛合成涉及的每步增长过程中反应官能团数目要少一些,使每一步反应总是限制在有限的几个活性中心进行,避免了采用大为过量的试剂,并降低了由于反应不完全产生“疵点”的几率,产物的结构也更加精致,同时纯化和表征也容易。
缺点为:对立体位阻比较敏感,随着树状大分子的增长,反应官能团活性减小,反应产率也会下降,且合成的高分子没有发散法合成的大。
? 发散收敛结合法是先用发散法制备出低代数的树状分子,作为活性中心,再用收敛法制得一定代数的扇形分子,称为“支化单体”,然后再将“支化单体”接到活性中心上就可合成出树状大分子。 发散收敛结合法综合了发散法和收敛法的优点,既能使合成产率提高,分子量增长加快,又能使分离纯化变得简单,减少分子结构缺陷。
1.Dendrimers are repeatedly branched molecules. The huge number of papers on dendritic architectures such as dendrimers, dendronized, hyperbranched and brush-polymers has generated a vast variety of inconsistent terms and definitions making a clear and concise unfolding of this topic highly difficult. The purpose of this section is to provide the vocabulary required for the description of chemical and physical phenomena as well as application aspects associated with the research in the area of dendritic molecules.。
Dendritic molecules are repeatedly branched species that are characterized by their structure perfection. The latter is based on the evaluation of both symmetry and polydispersity. The area of dendritic molecules can roughly be divided into the low-molecular weight and the high-molecular weight species. The first category includes dendrimers and dendrons whereas the second encompasses dendronized polymers, hyperbranched polymers, and brush-polymers (also called bottle-brushes).。
The name comes from the Greek δενδρον/dendron, meaning tree. Synonymous terms are arborols and cascade-molecules. Dendrimer is an internationally accepted term. Dendrimers and dendrons are repeatedly branched, monodisperse, and usually highly symmetric compounds. There is no apparent difference in defining dendrimer and dendron. A dendron usually contains a single chemically addressable group that is called the focal point. Because of the lack of the molar mass distribution high-molar-mass dendrimers and dendrons are macromolecules but not polymers.。
The first dendrimers were synthesized divergently by Vögtle in 1978[1], by Denkewalter and coworkers at Allied Corporation as polylysine dendrimers in 1981[2], by Tomalia at Dow Chemical in 1983[3] and in 1985[4], and by Newkome in 1985[5]. In 1990 a convergent synthesis was introduced by Mingjun Liu[6]. Dendrimers then experienced an explosion of scientific interest because of their unique molecular architecture (Fig 1). This resulted in over 5,000 scientific papers and patents published by the end of 2005.。
2.“dendrimer”这个词来自希腊的“dendros”,意思是树和枝,树上的分枝长到一定长度后又分成两个分枝,如此重复进行,直到长得如此稠密以致于长成象球形一样的树丛。在dendrimer中,分枝是内部连结的高分子聚合键,每一个键又会产生新键,全部会向一个焦点聚合或向一个核聚合。
在dendrimer上形成大量键端球形突起物,象毛线球上的绒毛。在合成过程中,能设计这些键端去执行特殊的化学功能,例如,键端可带电,其目的是完全发挥dendrimer的高分子电解质的功能。另一个特点,在合成过程中,也能控制dendrimer外部尺寸和内部的构。这使得有可能创造与外部不同性质的内腔和通道,并打开dendrimer作为载体或作为受邀分子晶核的大门。在这一能力中,dendrimer除了为纳米技术建造纳米块外,还起催化作用。
同意楼上,TEM直接测量d值牵涉到很多问题:1.。
物镜最佳电流是否调整到位2.
样品高度是否在正焦附近3.
样品的厚度4.
样品标尺是否经过严格校正,并经常check等等,即便是最佳条件,也可能有5%-10%左右的误差,最好的大概在1-3%。如果把金标样随样品一起观察,会好很多,但也有一定的误差范围。另外对于统计粒径,还有相当大的手动测量主观误差,所以你说的这个误差范围虽然有点大,但还是可能的。个人建议,供您参考。
自20 世纪70 年代初,人们开始致力于液-质联用接口技术的研究。在开始的20 年中处于缓慢的发展阶段,研制出了许多种联用接口,但均没有应用于商业化生产。直到大气压离子化(atmospheric-pressure ionization, API)接口技术的问世,液-质联用才得到迅猛发展,广泛应用于实验室内分析和应用领域。
液-质联用接口技术主要是沿着三个分支发展的:
(1)流动相进入质谱直接离子化,形成了连续流动快原子轰击(continuous-flow fast atom bombarment, CFFAB)技术等;
(2)流动相雾化后除去溶剂,分析物蒸发后再离子化,形成了“传送带式”接口(moving-belt interface)和离子束接口(particle-beam interface)等;
(3)流动相雾化后形成的小液滴解溶剂化,气相离子化或者离子蒸发后再离子化,形成了热喷雾接口(thermo spray interface)、大气压化学离子化(atmospheric pressure chemical ionization, APCI)和电喷雾离子化(electrospray ionization, ESI)技术等。有关液相质谱的接口技术和LC-MS 技术的发展,Niessen 曾经进行了较为详细的综述。
1 液体直接导入接口
1972 年,Tal’roze 等人提出了直接将色谱柱出口导入质谱的思想,当时称之为毛细管入口界面。相继有许多研究组开展这方面的研究,在1980 年这种液质接口已经用于商业化生产。为了避免非挥发溶剂的污染,Melera 使用一个小的横隔膜对这一接口进行了改进,研制成了液体直接导入接口(direct liquid introduction interface)技术。该接口是将液相色谱的流动相沿着进样杆流动,然后通过一个直径为3-5µm 的针孔,使液体射入质谱计的CI 离子源中。采用传统的CI 离子源可以很容易地把色谱与质谱计相连或脱开。
液体直接导入接口的优点是:接口简单,造价低廉,可将非挥发性和热不稳定性的化合物温和地转化成气态,样品以溶液状态进入质谱形成了CI 条件,可得到分子量信息。缺点是:分流过程中需要减少大量的流动相,使用的隔膜经常堵塞。
2 连续流动快原子轰击
1985 和1986 年,快原子轰击(FAB)和连续流动快原子轰击(CFFAB)接口技术相继问世,并随后投入了商业化生产。快原子轰击是用加速的中性原子(快原子)撞击以甘油调和后涂在金属表面的有机物(“靶面”),导致这些有机化合物的电离。分析物经中性原子的撞击获取足够的动能以离子或中性分子的形式由靶面逸出,进入气相,产生的离子一般是准分子离子。在此基础上发展的连续流动快原子轰击技术,得到更广泛的应用。其甘油的浓度在2%-5%之间,比静态的FAB使用的甘油量少,且测定过程中“靶面”得到不断更新,其化学物理性质变化很小,同时经色谱分离后的共存物质不会同时出现在“靶面”上,因此大大降低了噪声,信噪比提高,定量分析的重现性也得到改善。
连续流动快原子轰击接口的优点:是一种“软”离子化技术,适用于分析热不稳定、难以汽化的化合物,尤其是对肽类和蛋白质的分析在当时是最有效的。缺点是:只能在较低的流量下工作,一般小于5µl/min,大大限制了液相柱的分离效果,流动相中使用的甘油会使离子源很快变脏,同时容易堵塞毛细管,混合物样品中共存物质的干扰也会抑制分析物的离子化,降低灵敏度。
3 “传送带式”接口
1977 年,世界上第一台商业化生产的液-质联用接口就是使用传送带式(moving-belt, MB)技术,是由Mac Fadden 等人对前人研制的传送线式接口技术的改进。该接口是液相的流动相不停地由传送带送入质谱离子源,传送带可根据流动相的组成进行调整。在传送过程中,样品闪蒸解离进入离子源,在进入离子源前通过两个不同的泵和真空阀在减压条件下加热除去流动相,可以连接EI、CI 或FAB。在分析未知化合物时,可连接EI 分析,获得的谱图可以在质谱数据库检索。分析大分子生物样品时,多选用FAB。在CI 条件下,当样品与CI等离子体完全接触的状态下才可获得最佳结果。
传送带式接口的优点是:对挥发性溶剂的传送能力高达1.5ml/min,对纯水会减少至0.5ml/min;喷射装置与传送带表面呈45o 夹角时,可以改善色谱积分曲线;非挥发性缓冲液可以从传送带上除去,可以使用非挥发性缓冲溶液;对样品的收集率和富集率都较高。缺点是:传送带的记忆效应不易消除,检测信号的背景值较高,只能分析热稳定性的化合物。
4 离子束接口
离子束接口( particle-beam interface,PB ) 是从单分散气溶胶界面(monodisperse aerosol generating interface for chromatography, MAGIC)发展来的。该接口将液相色谱的流动相在常压下借助气动雾化产生气溶胶,气溶胶扩展进入加热的去溶剂室,此时待测分子通过一个动量分离器与溶剂分离,然后经一根加热的传送管进入质谱。分析物粒子在离子源与热源室的内壁碰撞而分解,溶剂蒸发后释放出气态待测分子即可进行离子化。
离子束接口的优点是:分析范围比热喷雾接口更宽,将电离过程与溶剂分离过程分开,更适合于使用不同的流动相,不同的分析物质;主要用于分析非极性或中等极性,分子量小于1,000 的化合物,在药残、药物代谢分析、化工方面曾有许多成功的实例分析。其缺点是:灵敏度变化范围大,线性响应的浓度范围较窄,两种化合物的协同洗脱会对响应产生不可预测的效应,使用高速氦气造价太高,离子化手段仍然是电子轰击,不适于分析热不稳定的化合物。
5热喷雾接口
热喷雾接口(thermo spray interface)是从20 世纪70 年代中期开始在美国休斯顿大学实验室立项研究,旨在解决在液相和质谱之间传送1ml/min 流速水溶液流动相的难题,可使用EI和CI两种离子化源。在最初的设计中非常复杂,直到1987 年后的五年内才得到突飞猛进的发展。该接口是将液相色谱的流动相通过一根电阻式加热毛细管进入一个加热的离子室,毛细管内径约0.1mm,比液体直接导入接口的取样孔大很多。毛细管的温度调节到溶剂部分蒸发的程度,产生蒸汽超声喷射,在含有水溶剂的情况下,喷射中含有夹带荷电小液滴的雾状物。由于离子室是加热的,并由前级真空泵预抽真空,当液滴经过离子源时继续蒸发变小,有效地增加了荷电液滴的电场梯度。最终使其成为自由离子而从液滴表面释放出去,通过取样锥内的小孔离开热喷雾离子源。
热喷雾接口的优点是:可以减少进入质谱的溶剂量,对不挥发的分析物分子也可电离,可以接受的溶剂流量大致范围为0.5~2.5ml/min,但不允许有不挥发性缓冲溶液。缺点是:该接口技术的重现性较差,受溶剂成分、取样杆温度及离子源温度的影响;是一种软电离技术,在谱图中只有分子离子峰,碎片非常少;对分析物要求有一定的极性,流动相中要有一定量的水,对热稳定性差的化合物有明显的分解作用。
6 电喷雾离子化技术
电喷雾(ESI)技术作为质谱的一种进样方法起源于20 世纪60 年代末Dole等人的研究,直到1984 年Fenn实验组对这一技术的研究取得了突破性进展。1985 年,将电喷雾进样与大气压离子源成功连接。1987 年,Bruins 等人发展了空气压辅助电喷雾接口,解决了流量限制问题,随后第一台商业化生产的带有API 源的液-质联用仪问世。ESI 的大发展主要源自于使用电喷雾离子化蛋白质的多电荷离子在四极杆仪器上分析大分子蛋白质,大大拓宽了分析化合物的分子量范围。
ESI 源主要由五部分组成:(1)流动相导入装置;(2)真正的大气压离子化区域,通过大气压离子化产生离子;(3)离子取样孔;(4)大气压到真空的界面;(5)离子光学系统,该区域的离子随后进入质量分析器。在ESI 中,离子的形成是分析物分子在带电液滴的不断收缩过程中喷射出来的,即离子化过程是在液态下完成的。液相色谱的流动相流入离子源,在氮气流下汽化后进入强电场区域,强电场形成的库仑力使小液滴样品离子化,离子表面的液体借助于逆流加热的氮气分子进一步蒸发,使分子离子相互排斥形成微小分子离子颗粒。这些离子可能是单电荷或多电荷,取决于分子中酸性或碱性基团的体积和数量。
电喷雾离子化技术的突出特点是:可以生成高度带电的离子而不发生碎裂,可将质荷比降低到各种不同类型的质量分析器都能检测的程度,通过检测带电状态可计算离子的真实分子量,同时,解析分子离子的同位素峰也可确定带电数和分子量。另外,ESI 可以很方便地与其它分离技术联接,如液相色谱、毛细管电泳等,可方便地纯化样品用于质谱分析。因此在药残、药物代谢、蛋白质分析、分子生物学研究等诸多方面得到广泛的应用。其主要优点是:离子化效率高;离子化模式多,正负离子模式均可以分析;对蛋白质的分析分子量测定范围高达105 以上;对热不稳定化合物能够产生高丰度的分子离子峰;可与大流量的液相联机使用;通过调节离子源电压可以控制离子的断裂,给出结构信息。
7 大气压化学离子化技术
大气压化学离子化(APCI)技术应用于液-质联用仪是由Horning 等人于20 世纪70 年代初发明的,直到20 世纪80 年代末才真正得到突飞猛进的发展,与ESI 源的发展基本上是同步的。但是APCI 技术不同于传统的化学电离接口,它是借助于电晕放电启动一系列气相反应以完成离子化过程,因此也称为放电电离或等离子电离。从液相色谱流出的流动相进入一具有雾化气套管的毛细管,被氮气流雾化,通过加热管时被汽化。在加热管端进行电晕尖端放电,溶剂分子被电离,充当反应气,与样品气态分子碰撞,经过复杂的反应后生成准分子离子。然后经筛选狭缝进入质谱计。整个电离过程是在大气压条件下完成的。
APCI 的优点是:形成的是单电荷的准分子离子,不会发生ESI 过程中因形成多电荷离子而发生信号重叠、降低图谱清晰度的问题;适应高流量的梯度洗脱的流动相;采用电晕放电使流动相离子化,能大大增加离子与样品分子的碰撞频率,比化学电离的灵敏度高3 个数量级;液相色谱-大气压化学电离串联质谱成为精确、细致分析混合物结构信息的有效技术。
早在19世纪末,E.Goldstein在低压放电实验中观察到正电荷粒子,随后W.Wein发现正电荷粒子束在磁场中发生偏转,这些观察结果为质谱的诞生提供了准备。
世界上第一台质谱仪于1912年由英国物理学家Joseph John Thomson(1906年诺贝尔物理学奖获得者、英国剑桥大学教授)研制成功;到20世纪20年代,质谱逐渐成为一种分析手段,被化学家采用;从40年代开始,质谱广泛用于有机物质分析;1966年,M.S.B,Munson和F.H. Field报道了化学电离源(Chemical Ionization,CI),质谱第一次可以检测热不稳定的生物分子;到了80年代左右,随着快原子轰击(FAB)、电喷雾(ESI)和基质辅助激光解析(MALDI)等新“软电离”技术的出现,质谱能用于分析高极性、难挥发和热不稳定样品后,生物质谱飞速发展,已成为现代科学前沿的热点之一。由于具有迅速、灵敏、准确的优点,并能进行蛋白质序列分析和翻译后修饰分析,生物质谱已经无可争议地成为蛋白质组学中分析与鉴定肽和蛋白质的最重要的手段。
质谱法在一次分析中可提供丰富的结构信息,将分离技术与质谱法相结合是分离科学方法中的一项突破性进展。如用质谱法作为气相色谱(GC)的检测器已成为一项标准化GC 技术被广泛使用。由于GC-MS 不能分离不稳定和不挥发性物质,所以发展了液相色谱(LC)与质谱法的联用技术。LC-MS可以同时检测糖肽的位置并且提供结构信息。1987年首次报道了毛细管电泳(CE)与质谱的联用技术。CE-MS 在一次分析中可以同时得到迁移时间、分子量和碎片信息,因此它是LC-MS的补充。
在众多的分析测试方法中,质谱学方法被认为是一种同时具备高特异性和高灵敏度且得到了广泛应用的普适性方法。质谱的发展对基础科学研究、国防、航天以及其它工业、民用等诸多领域均有重要意义。