sched_fifo

问题描述:linux进程调度的三种策略是什么? 大家好,小编来为大家解答以下问题,sched_fifo sched_normal,sched_fifo优先级,今天让我们一起来看看吧!

linux环境下的进程调度算法有哪些?

sched_fifo的相关图片

linux内核的三种主要调度策略:

1,SCHED_OTHER 分时调度策略,

2,SCHED_FIFO实时调度策略,先到先服务 。

3,SCHED_RR实时调度策略,时间片轮转。

实时进程将得到优先调用,实时进程根据实时优先级决定调度权值。分时进程则通过nice和counter值决定权值,nice越小,counter越大,被调度的概率越大,也就是曾经使用了cpu最少的进程将会得到优先调度。

SHCED_RR和SCHED_FIFO的不同:

当采用SHCED_RR策略的进程的时间片用完,系统将重新分配时间片,并置于就绪队列尾。放在队列尾保证了所有具有相同优先级的RR任务的调度公平。

SCHED_FIFO一旦占用cpu则一直运行。一直运行直到有更高优先级任务到达或自己放弃。

如果有相同优先级的实时进程(根据优先级计算的调度权值是一样的)已经准备好,FIFO时必须等待该进程主动放弃后才可以运行这个优先级相同的任务。而RR可以让每个任务都执行一段时间。

相同点:

RR和FIFO都只用于实时任务。

创建时优先级大于0(1-99)。

按照可抢占优先级调度算法进行。

就绪态的实时任务立即抢占非实时任务。

所有任务都采用linux分时调度策略时:

1,创建任务指定采用分时调度策略,并指定优先级nice值(-20~19)。

2,将根据每个任务的nice值确定在cpu上的执行时间(counter)。

3,如果没有等待资源,则将该任务加入到就绪队列中。

4,调度程序遍历就绪队列中的任务,通过对每个任务动态优先级的计算权值(counter+20-nice)结果,选择计算结果最大的一个去运行,当这个时间片用完后(counter减至0)或者主动放弃cpu时,该任务将被放在就绪队列末尾(时间片用完)或等待队列(因等待资源而放弃cpu)中。

5,此时调度程序重复上面计算过程,转到第4步。

6,当调度程序发现所有就绪任务计算所得的权值都为不大于0时,重复第2步。

所有任务都采用FIFO时:

1,创建进程时指定采用FIFO,并设置实时优先级rt_priority(1-99)。

2,如果没有等待资源,则将该任务加入到就绪队列中。

3,调度程序遍历就绪队列,根据实时优先级计算调度权值(1000+rt_priority),选择权值最高的任务使用cpu,该FIFO任务将一直占有cpu直到有优先级更高的任务就绪(即使优先级相同也不行)或者主动放弃(等待资源)。

4,调度程序发现有优先级更高的任务到达(高优先级任务可能被中断或定时器任务唤醒,再或被当前运行的任务唤醒,等等),则调度程序立即在当前任务堆栈中保存当前cpu寄存器的所有数据,重新从高优先级任务的堆栈中加载寄存器数据到cpu,此时高优先级的任务开始运行。重复第3步。

5,如果当前任务因等待资源而主动放弃cpu使用权,则该任务将从就绪队列中删除,加入等待队列,此时重复第3步。

所有任务都采用RR调度策略时:

1,创建任务时指定调度参数为RR,并设置任务的实时优先级和nice值(nice值将会转换为该任务的时间片的长度)。

2,如果没有等待资源,则将该任务加入到就绪队列中。

3,调度程序遍历就绪队列,根据实时优先级计算调度权值(1000+rt_priority),选择权值最高的任务使用cpu。

4,如果就绪队列中的RR任务时间片为0,则会根据nice值设置该任务的时间片,同时将该任务放入就绪队列的末尾。重复步骤3。

5,当前任务由于等待资源而主动退出cpu,则其加入等待队列中。重复步骤3。

系统中既有分时调度,又有时间片轮转调度和先进先出调度:

1,RR调度和FIFO调度的进程属于实时进程,以分时调度的进程是非实时进程。

2,当实时进程准备就绪后,如果当前cpu正在运行非实时进程,则实时进程立即抢占非实时进程。

3,RR进程和FIFO进程都采用实时优先级做为调度的权值标准,RR是FIFO的一个延伸。FIFO时,如果两个进程的优先级一样,则这两个优先级一样的进程具体执行哪一个是由其在队列中的未知决定的,这样导致一些不公正性(优先级是一样的,为什么要让你一直运行?),如果将两个优先级一样的任务的调度策略都设为RR,则保证了这两个任务可以循环执行,保证了公平。

Ingo Molnar-实时补丁。

为了能并入主流内核,Ingo Molnar的实时补丁也采用了非常灵活的策略,它支持四种抢占模式:

1.No Forced Preemption (Server),这种模式等同于没有使能抢占选项的标准内核,主要适用于科学计算等服务器环境。

2.Voluntary Kernel Preemption (Desktop),这种模式使能了自愿抢占,但仍然失效抢占内核选项,它通过增加抢占点缩减了抢占延迟,因此适用于一些需要较好的响应性的环境,如桌面环境,当然这种好的响应性是以牺牲一些吞吐率为代价的。

3.Preemptible Kernel (Low-Latency Desktop),这种模式既包含了自愿抢占,又使能了可抢占内核选项,因此有很好的响应延迟,实际上在一定程度上已经达到了软实时性。它主要适用于桌面和一些嵌入式系统,但是吞吐率比模式2更低。

4.Complete Preemption (Real-Time),这种模式使能了所有实时功能,因此完全能够满足软实时需求,它适用于延迟要求为100微秒或稍低的实时系统。

实现实时是以牺牲系统的吞吐率为代价的,因此实时性越好,系统吞吐率就越低。

请问什么是实时进程?的相关图片

请问什么是实时进程?

第一部分: 实时调度算法介绍

对于什么是实时系统,POSIX 1003.b作了这样的定义:指系统能够在限定的响应时间内提供所需水平的服务。而一个由Donald Gillies提出的更加为大家接受的定义是:一个实时系统是指计算的正确性不仅取决于程序的逻辑正确性,也取决于结果产生的时间,如果系统的时间约束条件得不到满足,将会发生系统出错。

实时系统根据其对于实时性要求的不同,可以分为软实时和硬实时两种类型。硬实时系统指系统要有确保的最坏情况下的服务时间,即对于事件的响应时间的截止期限是无论如何都必须得到满足。比如航天中的宇宙飞船的控制等就是现实中这样的系统。其他的所有有实时特性的系统都可以称之为软实时系统。如果明确地来说,软实时系统就是那些从统计的角度来说,一个任务(在下面的论述中,我们将对任务和进程不作区分)能够得到有确保的处理时间,到达系统的事件也能够在截止期限到来之前得到处理,但违反截止期限并不会带来致命的错误,像实时多媒体系统就是一种软实时系统。

一个计算机系统为了提供对于实时性的支持,它的操作系统必须对于CPU和其他资源进行有效的调度和管理。在多任务实时系统中,资源的调度和管理更加复杂。本文下面将先从分类的角度对各种实时任务调度算法进行讨论,然后研究普通的 Linux操作系统的进程调度以及各种实时Linux系统为了支持实时特性对普通Linux系统所做的改进。最后分析了将Linux操作系统应用于实时领域中时所出现的一些问题,并总结了各种实时Linux是如何解决这些问题的。

1. 实时CPU调度算法分类。

各种实时操作系统的实时调度算法可以分为如下三种类别[Wang99][Gopalan01]:基于优先级的调度算法(Priority-driven scheduling-PD)、基于CPU使用比例的共享式的调度算法(Share-driven scheduling-SD)、以及基于时间的进程调度算法(Time-driven scheduling-TD),下面对这三种调度算法逐一进行介绍。

1.1. 基于优先级的调度算法。

基于优先级的调度算法给每个进程分配一个优先级,在每次进程调度时,调度器总是调度那个具有最高优先级的任务来执行。根据不同的优先级分配方法,基于优先级的调度算法可以分为如下两种类型[Krishna01][Wang99]:

静态优先级调度算法:

这种调度算法给那些系统中得到运行的所有进程都静态地分配一个优先级。静态优先级的分配可以根据应用的属性来进行,比如任务的周期,用户优先级,或者其它的预先确定的策略。RM(Rate-Monotonic)调度算法是一种典型的静态优先级调度算法,它根据任务的执行周期的长短来决定调度优先级,那些具有小的执行周期的任务具有较高的优先级。

动态优先级调度算法:

这种调度算法根据任务的资源需求来动态地分配任务的优先级,其目的就是在资源分配和调度时有更大的灵活性。非实时系统中就有很多这种调度算法,比如短作业优先的调度算法。在实时调度算法中, EDF算法是使用最多的一种动态优先级调度算法,该算法给就绪队列中的各个任务根据它们的截止期限(Deadline)来分配优先级,具有最近的截止期限的任务具有最高的优先级。

1.2. 基于比例共享调度算法。

虽然基于优先级的调度算法简单而有效,但这种调度算法提供的是一种硬实时的调度,在很多情况下并不适合使用这种调度算法:比如象实时多媒体会议系统这样的软实时应用。对于这种软实时应用,使用一种比例共享式的资源调度算法(SD算法)更为适合。

比例共享调度算法指基于CPU使用比例的共享式的调度算法,其基本思想就是按照一定的权重(比例)对一组需要调度的任务进行调度,让它们的执行时间与它们的权重完全成正比。

我们可以通过两种方法来实现比例共享调度算法[Nieh01]:第一种方法是调节各个就绪进程出现在调度队列队首的频率,并调度队首的进程执行;第二种做法就是逐次调度就绪队列中的各个进程投入运行,但根据分配的权重调节分配个每个进程的运行时间片。

比例共享调度算法可以分为以下几个类别:轮转法、公平共享、公平队列、彩票调度法(Lottery)等。

比例共享调度算法的一个问题就是它没有定义任何优先级的概念;所有的任务都根据它们申请的比例共享CPU资源,当系统处于过载状态时,所有的任务的执行都会按比例地变慢。所以为了保证系统中实时进程能够获得一定的CPU处理时间,一般采用一种动态调节进程权重的方法。

1.3. 基于时间的进程调度算法。

对于那些具有稳定、已知输入的简单系统,可以使用时间驱动(Time-driven:TD)的调度算法,它能够为数据处理提供很好的预测性。这种调度算法本质上是一种设计时就确定下来的离线的静态调度方法。在系统的设计阶段,在明确系统中所有的处理情况下,对于各个任务的开始、切换、以及结束时间等就事先做出明确的安排和设计。这种调度算法适合于那些很小的嵌入式系统、自控系统、传感器等应用环境。

这种调度算法的优点是任务的执行有很好的可预测性,但最大的缺点是缺乏灵活性,并且会出现有任务需要被执行而CPU却保持空闲的情况。

2. 通用Linux系统中的CPU调度。

通用Linux系统支持实时和非实时两种进程,实时进程相对于普通进程具有绝对的优先级。对应地,实时进程采用SCHED_FIFO或者SCHED_RR调度策略,普通的进程采用SCHED_OTHER调度策略。

在调度算法的实现上,Linux中的每个任务有四个与调度相关的参数,它们是rt_priority、policy、priority(nice)、counter。调度程序根据这四个参数进行进程调度。

在SCHED_OTHER 调度策略中,调度器总是选择那个priority+counter值最大的进程来调度执行。从逻辑上分析,SCHED_OTHER调度策略存在着调度周期(epoch),在每一个调度周期中,一个进程的priority和counter值的大小影响了当前时刻应该调度哪一个进程来执行,其中 priority是一个固定不变的值,在进程创建时就已经确定,它代表了该进程的优先级,也代表这该进程在每一个调度周期中能够得到的时间片的多少; counter是一个动态变化的值,它反映了一个进程在当前的调度周期中还剩下的时间片。在每一个调度周期的开始,priority的值被赋给 counter,然后每次该进程被调度执行时,counter值都减少。当counter值为零时,该进程用完自己在本调度周期中的时间片,不再参与本调度周期的进程调度。当所有进程的时间片都用完时,一个调度周期结束,然后周而复始。另外可以看出Linux系统中的调度周期不是静态的,它是一个动态变化的量,比如处于可运行状态的进程的多少和它们priority值都可以影响一个epoch的长短。值得注意的一点是,在2.4以上的内核中, priority被nice所取代,但二者作用类似。

可见SCHED_OTHER调度策略本质上是一种比例共享的调度策略,它的这种设计方法能够保证进程调度时的公平性--一个低优先级的进程在每一个epoch中也会得到自己应得的那些CPU执行时间,另外它也提供了不同进程的优先级区分,具有高priority值的进程能够获得更多的执行时间。

对于实时进程来说,它们使用的是基于实时优先级rt_priority的优先级调度策略,但根据不同的调度策略,同一实时优先级的进程之间的调度方法有所不同:

SCHED_FIFO:不同的进程根据静态优先级进行排队,然后在同一优先级的队列中,谁先准备好运行就先调度谁,并且正在运行的进程不会被终止直到以下情况发生:1.被有更高优先级的进程所强占CPU;2.自己因为资源请求而阻塞;3.自己主动放弃CPU(调用sched_yield);

SCHED_RR:这种调度策略跟上面的SCHED_FIFO一模一样,除了它给每个进程分配一个时间片,时间片到了正在执行的进程就放弃执行;时间片的长度可以通过sched_rr_get_interval调用得到;

由于Linux系统本身是一个面向桌面的系统,所以将它应用于实时应用中时存在如下的一些问题:

Linux系统中的调度单位为10ms,所以它不能够提供精确的定时;

当一个进程调用系统调用进入内核态运行时,它是不可被抢占的;

Linux内核实现中使用了大量的封中断操作会造成中断的丢失;

由于使用虚拟内存技术,当发生页出错时,需要从硬盘中读取交换数据,但硬盘读写由于存储位置的随机性会导致随机的读写时间,这在某些情况下会影响一些实时任务的截止期限;

虽然Linux进程调度也支持实时优先级,但缺乏有效的实时任务的调度机制和调度算法;它的网络子系统的协议处理和其它设备的中断处理都没有与它对应的进程的调度关联起来,并且它们自身也没有明确的调度机制;

3. 各种实时Linux系统。

3.1. RT-Linux和RTAI。

RT -Linux是新墨西哥科技大学(New Mexico Institute of Technology)的研究成果[RTLinuxWeb][Barabanov97]。它的基本思想是,为了在Linux系统中提供对于硬实时的支持,它实现了一个微内核的小的实时操作系统(我们也称之为RT-Linux的实时子系统),而将普通Linux系统作为一个该操作系统中的一个低优先级的任务来运行。另外普通Linux系统中的任务可以通过FIFO和实时任务进行通信。RT-Linux的框架如图 1所示:

图 1 RT-Linux结构

RT -Linux的关键技术是通过软件来模拟硬件的中断控制器。当Linux系统要封锁CPU的中断时时,RT-Linux中的实时子系统会截取到这个请求,把它记录下来,而实际上并不真正封锁硬件中断,这样就避免了由于封中断所造成的系统在一段时间没有响应的情况,从而提高了实时性。当有硬件中断到来时, RT-Linux截取该中断,并判断是否有实时子系统中的中断例程来处理还是传递给普通的Linux内核进行处理。另外,普通Linux系统中的最小定时精度由系统中的实时时钟的频率决定,一般Linux系统将该时钟设置为每秒来100个时钟中断,所以Linux系统中一般的定时精度为 10ms,即时钟周期是10ms,而RT-Linux通过将系统的实时时钟设置为单次触发状态,可以提供十几个微秒级的调度粒度。

RT-Linux实时子系统中的任务调度可以采用RM、EDF等优先级驱动的算法,也可以采用其他调度算法。

RT -Linux对于那些在重负荷下工作的专有系统来说,确实是一个不错的选择,但他仅仅提供了对于CPU资源的调度;并且实时系统和普通Linux系统关系不是十分密切,这样的话,开发人员不能充分利用Linux系统中已经实现的功能,如协议栈等。所以RT-Linux适合与工业控制等实时任务功能简单,并且有硬实时要求的环境中,但如果要应用与多媒体处理中还需要做大量的工作。

意大利的RTAI( Real-Time Application Interface )源于RT-Linux,它在设计思想上和RT-Linux完全相同。它当初设计目的是为了解决RT-Linux难于在不同Linux版本之间难于移植的问题,为此,RTAI在 Linux 上定义了一个实时硬件抽象层,实时任务通过这个抽象层提供的接口和Linux系统进行交互,这样在给Linux内核中增加实时支持时可以尽可能少地修改 Linux的内核源代码。

3.2. Kurt-Linux。

Kurt -Linux由Kansas大学开发,它可以提供微秒级的实时精度[KurtWeb] [Srinivasan]。不同于RT-Linux单独实现一个实时内核的做法,Kurt -Linux是在通用Linux系统的基础上实现的,它也是第一个可以使用普通Linux系统调用的基于Linux的实时系统。

Kurt-Linux将系统分为三种状态:正常态、实时态和混合态,在正常态时它采用普通的Linux的调度策略,在实时态只运行实时任务,在混合态实时和非实时任务都可以执行;实时态可以用于对于实时性要求比较严格的情况。

为了提高Linux系统的实时特性,必须提高系统所支持的时钟精度。但如果仅仅简单地提高时钟频率,会引起调度负载的增加,从而严重降低系统的性能。为了解决这个矛盾, Kurt-Linux采用UTIME所使用的提高Linux系统中的时钟精度的方法[UTIMEWeb]:它将时钟芯片设置为单次触发状态(One shot mode),即每次给时钟芯片设置一个超时时间,然后到该超时事件发生时在时钟中断处理程序中再次根据需要给时钟芯片设置一个超时时间。它的基本思想是一个精确的定时意味着我们需要时钟中断在我们需要的一个比较精确的时间发生,但并非一定需要系统时钟频率达到此精度。它利用CPU的时钟计数器TSC (Time Stamp Counter)来提供精度可达CPU主频的时间精度。

对于实时任务的调度,Kurt-Linux采用基于时间(TD)的静态的实时CPU调度算法。实时任务在设计阶段就需要明确地说明它们实时事件要发生的时间。这种调度算法对于那些循环执行的任务能够取得较好的调度效果。

Kurt -Linux相对于RT-Linux的一个优点就是可以使用Linux系统自身的系统调用,它本来被设计用于提供对硬实时的支持,但由于它在实现上只是简单的将Linux调度器用一个简单的时间驱动的调度器所取代,所以它的实时进程的调度很容易受到其它非实时任务的影响,从而在有的情况下会发生实时任务的截止期限不能满足的情况,所以也被称作严格实时系统(Firm Real-time)。目前基于Kurt-Linux的应用有:ARTS(ATM Reference Traffic System)、多媒体播放软件等。另外Kurt-Linux所采用的这种方法需要频繁地对时钟芯片进行编程设置。

3.3. RED-Linux。

RED -Linux是加州大学Irvine分校开发的实时Linux系统[REDWeb][ Wang99],它将对实时调度的支持和Linux很好地实现在同一个操作系统内核中。它同时支持三种类型的调度算法,即:Time-Driven、 Priority-Dirven、Share-Driven。

为了提高系统的调度粒度,RED-Linux从RT-Linux那儿借鉴了软件模拟中断管理器的机制,并且提高了时钟中断频率。当有硬件中断到来时,RED-Linux的中断模拟程序仅仅是简单地将到来的中断放到一个队列中进行排队,并不执行真正的中断处理程序。

另外为了解决Linux进程在内核态不能被抢占的问题, RED-Linux在Linux内核的很多函数中插入了抢占点原语,使得进程在内核态时,也可以在一定程度上被抢占。通过这种方法提高了内核的实时特性。

RED-Linux的设计目标就是提供一个可以支持各种调度算法的通用的调度框架,该系统给每个任务增加了如下几项属性,并将它们作为进程调度的依据:

Priority:作业的优先级;

Start-Time:作业的开始时间;

Finish-Time:作业的结束时间;

Budget:作业在运行期间所要使用的资源的多少;

通过调整这些属性的取值及调度程序按照什么样的优先顺序来使用这些属性值,几乎可以实现所有的调度算法。这样的话,可以将三种不同的调度算法无缝、统一地结合到了一起。

四大lockup是指的相关图片

四大lockup是指

什么是实时进程?

在网络上的操作都是实时进程,例如 你打开的网页、游戏、统称实时进程。

1.分类

(1)进程分普通进程和实时进程,

(2)而实时进程又分SCHED_FIFO与SCHED_RR实时调度策略,

(3)普通进程只有SCHED_OTHER分时调度策略。

2.实时进程的特点

(1)实时进程一直运行直到退出,除非它阻塞才会释放CPU。

(2)只能被更高优先级的实时进程抢占。

linux 信号灯中线程切换问题的相关图片

linux 信号灯中线程切换问题

四大lockup是指四大监狱

四大监狱:大西北监狱,北京第一监狱,沧州监狱,东三省监狱。

在linux中如何根据nice值设置任务时间片

(1)Posix标准中有有名信号灯和无名信号灯之分,对于有名信号灯,可以用sem_open来创建,其prototype是:。

sem_t *sem_open(const char *name, int oflag);//打开已有的信号灯。

sem_t *sem_open(const char *name, int oflag, mode_t mode, unsigned value);//一般是创建信号灯。

期中name是信号灯的名字, oflag是0, O_CREAT 或者 O_CREAT | O_EXCL, 如果指定O_CREAT, 那么mode和value对应创建该信号的模式和初始值。 如果指定了O_EXCL, 而且该信号灯已经在系统中存在,那调用会出错返回SEM_FAILED常量。 对于Linux内核来说,有名信号灯是很晚才加入内核中的,创建或是打开有名信号时候,应该指定”/semname“名字,对应的信号灯创建在/dev/shm目录下,名字是/dev/shm/sem.semname. BTW, 用gcc/g++编译实用信号灯功能的程序时候,应该引用librt库,(e.g., g++ -lrt sem.cpp). 关闭已打开的信号灯,用sem_close(sem_t *sem). 关闭信号灯并不意味着系统会删除它,要删除一个信号灯,需要调用sem_unlink(sem_t *sem)。 有名信号灯一般是为了进程之间同步实用的。 无名信号灯,一般是为一个进程内的不同线程之间同步使用的。 创建无名信号灯的方法如下:

sem_t sem;

sem_init(&sem, int shared, unsigned int value);//初始化信号灯。

......

sem_destroy(&sem);//清除信号灯。

(2)信号灯的使用和状态。

信号灯一般用来描述不同线程所共享的公共资源的数量,每一个信号灯都有一个叫做信号量的非负整数与之相连;信号量一般代表公共资源的数目,比如空闲列表中的缓冲区数目,视频中读入帧的数目,等等。对于一个线程可以用sem_wait, sem_post函数来改变一个信号灯的信号量。

sem_wait(sem_t &sem);。

sem_wait的语义如下:

while(信号量==0)。

等待; //此处线程被挂起,等待其他线程调用sem_post唤醒之。

信号量减1;

注意:测试信号量是否为零,和减一的操作是原子的,也就是说期间不会发生线程切换。

与sem_wait对应的调用是sem_post,语义如下:

信号量加1;

唤醒等待该信号量的线程;//调用sem_wait并等待的线程。

该操作也是原子的。

信号灯的状态可以用sem_getvalue来查看。一般来说sem_wait和sem_post的调用不必在同一个线程内成对出现(象mutex那样,lock/unlock要配对出现)。 一般的情形是这样的,一个线程等待资源可用,调用sem_wait, 另外一个线程生成资源,然后调用sem_post,唤醒等待该资源的线程。因为信号灯所描述的是线程间公共资源,使用的时候一般和mutex一起使用,mutex保证访问公共资源的线程排他性,信号灯表示资源的可用性。

原文地址:http://www.qianchusai.com/sched_fifo.html

lw/巴卫图片头像冷酷,巴卫头像可爱呆萌图片

lw/巴卫图片头像冷酷,巴卫头像可爱呆萌图片

ssr混淆设置免流,移动ssr免流混淆参数

ssr混淆设置免流,移动ssr免流混淆参数

英语不好怎么写sci,英语不好怎么写科研论文

英语不好怎么写sci,英语不好怎么写科研论文

cc/艾滋病症状初期图片男,艾滋病初期症状图片大全 早期症状

cc/艾滋病症状初期图片男,艾滋病初期症状图片大全 早期症状

rockschool架子鼓8级,rockschool架子鼓8级要学多久

rockschool架子鼓8级,rockschool架子鼓8级要学多久

慕合-10,慕合怀特是什么档次

慕合-10,慕合怀特是什么档次

回音壁怎么接,回音壁怎么接电脑主机

回音壁怎么接,回音壁怎么接电脑主机

穿书睡了敌方男配,穿书睡了敌方男配无册威阂读

穿书睡了敌方男配,穿书睡了敌方男配无册威阂读

Archibald,archibald是什么意思

Archibald,archibald是什么意思

chamois,臂丛神经牵拉试验

chamois,臂丛神经牵拉试验