不能。
Android系统需要百兆以上的处理器和数十兆的RAM空间。标准Linux需要处理器具有MMU(存储器管理单元)。STM32满足不了这两点要求,所以STM32上是无法跑Android的。
STM32是M系列,属于低成本设计,不带MMU控制器,不可能运行Linuxuc,μClinux不算Linux的。因此基于STM平台且满足实时控制要求操作系统,只有以下5种可供移植选择。分别为μClinux、μC/OS-II、eCos、FreeRTOS和rt-thread。
扩展资料:
STM32L 系列产品基于超低功耗的 ARM Cortex-M4处理器内核,采用意法半导体独有的两大节能技术:130nm 专用低泄漏电流制造工艺和优化的节能架构,提供业界领先的节能性能。
该系列属于意法半导体阵容强大的 32 位 STM32 微控制器产品家族,该产品家族共有 200余款产品,全系列产品共用大部分引脚、软件和外设,优异的兼容性为开发人员带来最大的设计灵活性。
STM32F0 系列产品基于超低功耗的 ARM Cortex-M0 处理器内核,整合增强的技术和功能,瞄准超低成本预算的应用。该系列微控制器缩短了采用 8 位和 16 位微控制器的设备与采用 32 位微控制器的设备之间的性能差距,能够在经济型用户终端产品上实现先进且复杂的功能。
参考资料来源:百度百科-stm32。
可以用stlink disable read protection的菜单程序来解锁。
STM32F0系列有3种保护等级,L0,L1,L2。L0是不保护,L1,可以解锁,但是解锁后FLASH被清空;L2是不可逆的,就是锁死,什么工具都解锁不了(芯片破解除外)。
扫描隧道显微镜(Scanning Tunneling Microscope, 缩写为STM)是一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率。STM使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物化性质,在表面科学、材料科学、生命科学等领域的研究中有着重大的意义和广泛的应用前景,被国际科学界公认为20世纪82年代世界十大科技成就之一。隧道针尖的结构是扫描隧道显微技术要解决的主要问题之一。针尖的大小、形状和化学同一性不仅影响着扫描隧道显微镜图像的分辨率和图像的形状,而且也影响着测定的电子态。针尖的宏观结构应使得针尖具有高的弯曲共振频率,从而可以减少相位滞后,提高采集速度。如果针尖的尖端只有一个稳定的原子而不是有多重针尖,那么隧道电流就会很稳定,而且能够获得原子级分辨的图像。针尖的化学纯度高,就不会涉及系列势垒。例如,针尖表面若有氧化层,则其电阻可能会高于隧道间隙的阻值,从而导致针尖和样品间产生隧道电流之前,二者就发生碰撞。制备针尖的材料主要有金属钨丝、铂-铱合金丝等。钨针尖的制备常用电化学腐蚀法。而铂- 铱合金针尖则多用机械成型法,一般 直接用剪刀剪切 而成。不论哪一种针尖,其表面往往覆盖着一层氧化层,或吸附一定的杂质,这经常是造成隧道电流不稳、噪音大和扫描隧道显微镜图象的不可预期性的原因。因此,每次实验前,都要对针尖进行处理,一般用化学法清洗,去除表面的氧化层及杂质,保证针尖具有良好的导电性。
有两种规格,1Kb和2Kb的,也就是1024字节和2048字节,一般来说内部flash大的采用2048字节一页,内部flash小的采用1024字节一页。 你可以STM32F103系列为参考: 小容量产品主存储块1-32KB, 每页1KB。 中容量产品主存储块64-128KB。
复印机主控芯片通常是一款高性能的微控制器芯片,例如:
微芯公司的STM32系列芯片,包括STM32F0、STM32F1、STM32F2、STM32F3、STM32F4、STM32F7和STM32H7等系列,广泛用于各种复印机的主控制板上。
美国英飞凌公司的Cortex-M系列芯片,包括Cortex-M0、Cortex-M3、Cortex-M4和Cortex-M7等系列,也是常用的复印机主控芯片。
日本东芝公司的TX系列芯片,包括TX03、TX04、TX06和TX07等系列,也被广泛应用于复印机控制板上。
美国意法半导体公司的STM8和STM32系列芯片,也是常用的复印机主控芯片。
这些芯片都具有高性能、低功耗、丰富的外设接口、易于开发和调试等优点,非常适合用于控制复印机的各种功能,如打印、扫描、复印等。