正态分布的规律,均值X服从N(u,(σ^2)/n)。
因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2)。
均值X=(X1+X2...Xn)/n,所以X期望为u,方差D(X)=D(X1+X2...Xn)/n^2=σ^2/n。
均值是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
扩展资料:
服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ^2)。
首先,需要把两个正态分布化为标准正态分布,
根据t分布定义:
设X服从标准正态分布N(0,1),Y服从卡方(n)分布,那么Z=X/√(Y/n)的分布称为自由度为n的t分布,记为Z~t(n)。
显然,n=1时,√(Y/n)=√(Y),为正态分布,
所以,
两个标准正态变量的比值服从t(1)分布,也叫柯西分布。
卡方分布。
若n个相互独立的随机变量ξ₁、ξ₂、……、ξn ,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布。
卡方分布是由正态分布构造而成的一个新的分布,对于任意正整数x, 自由度为v的卡方分布是一个随机变量X的机率分布。
扩展资料:
不同的自由度决定不同的卡方分布,自由度越小,分布越偏斜。在抽样分布理论一节里讲到,从正态总体进行一次抽样就相当于独立同分布的 n 个正态随机变量ξ1,ξ2,…,ξn的一次取值,将 n 个随机变量针对总体均值与方差进行标准化得(i=1,…,n),显然每个都是服从标准正态分布的。
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
参考资料来源:百度百科——卡方分布。